Validated Computational Methods in Global Analysis and Applications to Celestial Mechanics

全局分析中经过验证的计算方法及其在天体力学中的应用

基本信息

  • 批准号:
    1813501
  • 负责人:
  • 金额:
    $ 13.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Celestial mechanics is the branch of mathematical physics that studies the motion of planets, asteroids, and comets, and that facilitates design of safe and efficient space missions. While the intellectual foundations of celestial mechanics belong to antiquity, the field is more relevant than ever thanks to the advent of space exploration in the twentieth century. Modern developments in dynamical systems theory provide deep insights, and by now several space missions have transformed inspired mathematics into successful practice. The key to these developments is to understand certain landmark objects known as invariant manifolds, and to study connections between them. In realistic applications the only way to discover these landmarks is through numerical computations. Due to the global nature of these computations, questions involving errors and accuracy are both important and subtle. These issues are treated with great care in the present project, ultimately leading to a mathematically rigorous framework describing all discretization and truncation errors. The results provide practitioners of scientific computing with mathematically rigorous tools for quantifying computational errors, while providing mathematicians with new methods for proving theorems. The investigator applies this new framework to problems in celestial mechanics that have resisted earlier analysis. Doing so requires substantial advancement of both analytical and computational aspects of the theory. The resulting infrastructure will be made freely available, and can be used to study other complex mathematical models.A central theme of the investigator's research program is the unification of numerical and analytical methods for global analysis of nonlinear systems. This project builds on the success of the investigator's earlier research, demonstrating its scalability and parallelizability. The focus of the project is global analysis in gravitational N-body problems, an area with many longstanding unanswered theoretical questions and many opportunities for practical application. One project numerically studies collision dynamics on a compactified phase space, while another answers questions about global branches of periodic orbits bifurcating from the polygonal central configurations of Lagrange. A more computational aspect of the project develops a new approach to cluster computing and archiving of invariant manifold atlases, providing deeper understanding of the dynamics and new possibilities for space mission design. Throughout, the work is guided by the principle that basic invariant sets like equilibria, periodic orbits, and heteroclinic/homoclinic connections between them are the fundamental building blocks for understanding complicated dynamics. The resulting computer-assisted analysis is useful for studying other problems such as those involving geodesic flows, mechanical systems on compact manifolds, chemistry, and electrodynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
天体力学是数学物理学的分支,研究行星、小行星和彗星的运动,有助于设计安全有效的太空任务。 虽然天体力学的知识基础属于古代,但由于二十世纪世纪太空探索的到来,该领域比以往任何时候都更加相关。 动力系统理论的现代发展提供了深刻的见解,到目前为止,一些太空任务已经将启发性的数学转化为成功的实践。 这些发展的关键是理解某些被称为不变流形的地标性物体,并研究它们之间的联系。 在实际应用中,发现这些地标的唯一方法是通过数值计算。 由于这些计算的全局性,涉及误差和准确性的问题既重要又微妙。 在本项目中,这些问题都得到了非常仔细的处理,最终导致了一个数学上严格的框架来描述所有的离散化和截断误差。 这些结果为科学计算的从业者提供了量化计算错误的数学严格工具,同时为数学家提供了证明定理的新方法。 研究人员将这个新的框架应用于天体力学中那些抵抗早期分析的问题。 这样做需要理论的分析和计算方面的实质性进展。 由此产生的基础设施将免费提供,并可用于研究其他复杂的数学模型。研究人员的研究计划的中心主题是统一的数值和分析方法的非线性系统的全局分析。 该项目建立在研究人员早期研究的成功基础上,展示了其可扩展性和并行性。 该项目的重点是引力N体问题的全局分析,这是一个有许多长期悬而未决的理论问题和许多实际应用机会的领域。 一个项目数值研究碰撞动力学的紧致相空间,而另一个回答问题的全球分支的周期性轨道分叉的多边形中心配置的拉格朗日。 该项目更多的计算方面开发了一种新的集群计算方法和不变流形地图集的存档,提供了对空间使命设计的动力学和新的可能性的更深入的理解。 在整个过程中,工作是由基本不变集的原则,如平衡,周期轨道,和它们之间的异宿/同宿连接是理解复杂动力学的基本构建模块。 由此产生的计算机辅助分析对于研究其他问题非常有用,例如涉及测地流、紧凑流形上的机械系统、化学和电动力学的问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估被认为值得支持优点和更广泛的影响审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homoclinic dynamics in a restricted four-body problem: transverse connections for the saddle-focus equilibrium solution set
Finite element approximation of invariant manifolds by the parameterization method
Validated Numerical Approximation of Stable Manifolds for Parabolic Partial Differential Equations
抛物型偏微分方程稳定流形的验证数值逼近
Computer assisted proof of drift orbits along normally hyperbolic manifolds
计算机辅助证明沿正常双曲流形的漂移轨道
Computer assisted proofs of two-dimensional attracting invariant tori for ODEs
  • DOI:
    10.3934/dcds.2020162
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Capinski;Emmanuel Fleurantin;J. D. M. James
  • 通讯作者:
    M. Capinski;Emmanuel Fleurantin;J. D. M. James
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Mireles-James其他文献

Jason Mireles-James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Mireles-James', 18)}}的其他基金

Fine Structure in Hamiltonian Systems
哈密​​顿系统中的精细结构
  • 批准号:
    2307987
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
Computational methods for pandemic-scale genomic epidemiology
大流行规模基因组流行病学的计算方法
  • 批准号:
    MR/Z503526/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Research Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
PROTACS: new computational methods and targets
PROTACS:新的计算方法和目标
  • 批准号:
    2897704
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Developing computational methods to minimise social bias in healthcare AI
开发计算方法以尽量减少医疗保健人工智能中的社会偏见
  • 批准号:
    2868742
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
  • 批准号:
    2303652
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了