Fine Structure in Hamiltonian Systems

哈密​​顿系统中的精细结构

基本信息

  • 批准号:
    2307987
  • 负责人:
  • 金额:
    $ 29.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Hamiltonian systems play an essential role in mathematical physics, where they are used to model the behavior of a wide variety of physical systems ranging from electrons in semiconductors to the motions of stars and planets in galaxies. One major difficulty with these systems is that, since there is no friction, there is nothing in the model to smooth out and isolate fine structure. Instead, the evolution of a Hamiltonian system is organized by geometric objects like equilibrium solutions, periodic orbits, and invariant tori. This research project provides new insights into the fine structure of Hamiltonian systems using a blend of computational and analytical tools. Indeed, the project combines computational and analytical techniques in novel ways, providing both new techniques for proving mathematical theorems about the properties of the models, and new computational techniques for understanding their practical behavior. These ideas are used to answer outstanding questions in Celestial Mechanics, and to explore the behavior of gravitating systems of particles at a finer resolution than ever before. Explicit applications of this research include the design/discovery of new low energy transfer orbits for space flights in the solar system.This project introduces new analytical and computational methods for studying phase space structure in nonlinear systems. Applications to Hamiltonian systems are stressed, as in this case there are no attractors to organize the dynamics. The project has two main parts. The first part is local and expands existing high order techniques for computing hyperbolic invariant objects to encompass the parabolic case. The second part is more global and develops computational methods for growing invariant manifold atlases comprised of high order chart maps for stable/unstable manifolds. An important application is the computation of intersections between such objects, and efficient search strategies are discussed. These intersections (or webs) play a critical role in organizing Hamiltonian systems as they determine transport between different regions of phase space and generate complicated recurrent dynamics. The project involves graduate research activities and facilitates collaborations between researchers in the areas of resurgence theory and computational dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
哈密顿系统在数学物理学中起着至关重要的作用,它们被用来模拟各种物理系统的行为,从半导体中的电子到星系中恒星和行星的运动。 这些系统的一个主要困难是,由于没有摩擦,模型中没有任何东西可以平滑和隔离精细结构。 相反,哈密顿系统的演化是由几何对象组织的,如平衡解,周期轨道和不变环面。这个研究项目提供了新的见解精细结构的哈密顿系统使用的计算和分析工具的混合。 事实上,该项目以新颖的方式结合了计算和分析技术,既提供了证明有关模型属性的数学定理的新技术,又提供了理解其实际行为的新计算技术。 这些想法被用来回答天体力学中悬而未决的问题,并以比以往任何时候都更精细的分辨率探索粒子引力系统的行为。 该研究的明确应用包括设计/发现太阳系空间飞行的新的低能量转移轨道。该项目介绍了研究非线性系统相空间结构的新的分析和计算方法。应用程序的哈密顿系统强调,在这种情况下,没有吸引子组织的动态。该项目有两个主要部分。第一部分是本地和扩展现有的高阶技术计算双曲不变的对象,包括抛物线的情况下。第二部分是更全球性的,并制定计算方法的增长不变的流形图集组成的高阶图表映射稳定/不稳定的流形。一个重要的应用是计算这些对象之间的交集,并讨论了有效的搜索策略。这些交叉点(或网络)在组织哈密顿系统中起着关键作用,因为它们决定了相空间不同区域之间的传输,并产生复杂的循环动力学。 该项目涉及研究生的研究活动,并促进研究人员在复苏理论和计算动力学领域的合作。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Mireles-James其他文献

Jason Mireles-James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Mireles-James', 18)}}的其他基金

Validated Computational Methods in Global Analysis and Applications to Celestial Mechanics
全局分析中经过验证的计算方法及其在天体力学中的应用
  • 批准号:
    1813501
  • 财政年份:
    2018
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Continuing Grant

相似海外基金

Harmonic Analysis, Structure Theory of Measures, and Properties of Hamiltonian Dynamical Systems
调和分析、结构测度理论以及哈密顿动力系统的性质
  • 批准号:
    1856124
  • 财政年份:
    2019
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
New degrees of freedom and rigorous error bounds for the structure-preserving model order reduction of port-Hamiltonian systems
端口哈密尔顿系统的结构保持模型降阶的新自由度和严格误差界限
  • 批准号:
    418612884
  • 财政年份:
    2019
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Research Grants
Dynamic Structure-preserving Analysis and Control of Flexible Long Boom Manipulator Based on Port-Hamiltonian System
基于Port-Hamilton系统的柔性长臂机械手动态保形分析与控制
  • 批准号:
    392009685
  • 财政年份:
    2018
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Research Grants
Study of long time behavior of nonlinear dispersive equations via Hamiltonian structure
通过哈密顿结构研究非线性色散方程的长时间行为
  • 批准号:
    15K17568
  • 财政年份:
    2015
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Hamiltonian structure for monodromy systems
单峰系统的哈密顿结构
  • 批准号:
    19740083
  • 财政年份:
    2007
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Hamiltonian structure in the pattern selection problems of dissipative systems
耗散系统模式选择问题中的哈密顿结构
  • 批准号:
    18540120
  • 财政年份:
    2006
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Universal aspects of Malti-ergodic phase space structure in many body hamiltonian dynamics
多体哈密顿动力学中马尔蒂遍历相空间结构的普遍方面
  • 批准号:
    15540376
  • 财政年份:
    2003
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Semiflexible Macromolecules with Secondary Structure: A Theoretical Approach based on the Edwards' Hamiltonian
职业:具有二级结构的半柔性高分子:基于爱德华兹哈密顿量的理论方法
  • 批准号:
    0132278
  • 财政年份:
    2002
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Continuing Grant
U.S.-Korea Cooperative Research on Effective Hamiltonian Theories of Molecular Electronic Structure
美韩合作研究有效的分子电子结构哈密顿理论
  • 批准号:
    9113106
  • 财政年份:
    1992
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
U.S.-Korea Cooperative Research on Effective Hamiltonian Theories of Molecular Electronic Structure
美韩合作研究有效的分子电子结构哈密顿理论
  • 批准号:
    8716532
  • 财政年份:
    1988
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了