CDS&E: Reconstruction of universe's initial conditions with galaxies

CDS

基本信息

  • 批准号:
    1814370
  • 负责人:
  • 金额:
    $ 52.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The universe evolved from a simple state where matter was almost uniformly distributed in space. In the present day the matter is very strongly clustered into galaxies, clusters of galaxies, and even larger structures. This evolution is governed by gravity and by additional processes such as formation of stars in galaxies. There is enormous amount of information about the universe origins, content, and future evolution hidden in the galaxy distribution. This information is difficult to access in the present-day form because it has been scrambled by gravity and other processes. The goal of this project is to use simulations to reconstruct the initial conditions of our universe. When these are evolved in time with known laws of physics, they give rise to our visible universe. Ultimately this will allow a movie to made of our universe starting from the initial smooth distribution and ending in images of actual galaxies such as the Hubble Deep Field. A major benefit of this method is that information about our universe can be simply extracted from the initial conditions. More broadly, an aim of this project is to impact other communities where similar problems arise such as machine learning via the methods and tools developed The primary goal of this project is to develop and apply a new set of theoretical and computational instruments, including new statistical methods, algorithms, and computational implementations, to optimally reconstruct the initial condition of our universe from the spatial distribution of galaxies. Galaxies are a primary probe of the large scale structure of the universe that are or will be observed by surveys such as the Sloan Digital Sky Survey (SDSS), the Dark Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), the Dark Energy Spectroscopic Instrument (DESI), EUCLID and the Wide Field Infrared Survey Telescope (WFIRST). This project will extend a hierarchical probabilistic generative model developed by the PI's team to the modelling of galaxies. The framework attempts to solve an exact probabilistic model for the initial conditions that is conditioned on the data with a process that combines elements of numerical optimization in high dimensions and analytic marginalization to find the best solution and their covariance matrix. The proposed research will apply this method to galaxy redshift catalogs and their surrounding dark matter information inferred from weak lensing. The method will be developed using realistic simulations of both dark matter and of galaxies populated in the dark matter and hydro simulations, before being applied to real data. This research will explore best methods to achieve fast convergence in the search for local and global minimum and aims to have an impact more broadly to research areas (e.g. neural networks) outside astronomy in the tools developed for non-convex optimization in very high dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宇宙是从物质在空间中几乎均匀分布的简单状态演化而来的。在今天,物质非常强烈地聚集成星系,星系团,甚至更大的结构。这种演化受重力和其他过程(如星系中恒星的形成)的控制。星系分布中隐藏着大量关于宇宙起源、内容和未来演化的信息。 这些信息很难以今天的形式获得,因为它已经被重力和其他过程打乱了。该项目的目标是使用模拟来重建我们宇宙的初始条件。当它们按照已知的物理定律及时演化时,它们就产生了我们可见的宇宙。最终,这将使我们的宇宙从最初的平滑分布开始,以实际星系的图像(如哈勃深场)结束。这种方法的一个主要好处是,可以从初始条件中简单地提取关于我们宇宙的信息。 更广泛地说,该项目的目的是通过开发的方法和工具影响其他出现类似问题的社区,例如机器学习 该项目的主要目标是开发和应用一套新的理论和计算工具,包括新的统计方法,算法和计算实现,以最佳方式从星系的空间分布重建我们宇宙的初始条件。伽利略是宇宙大尺度结构的主要探测器,这些结构已经或将要通过诸如斯隆数字巡天(SDSS)、暗能量巡天(DES)、大型综合巡天望远镜(LSST)、暗能量光谱仪(DESI)、欧几里得和宽视场红外巡天望远镜(WFIRST)等巡天观测。该项目将扩展PI团队开发的分层概率生成模型,用于星系建模。该框架试图解决一个精确的概率模型的初始条件,是以数据为条件的过程,结合元素的数值优化在高维和分析边缘化,以找到最佳的解决方案和他们的协方差矩阵。拟议中的研究将把这种方法应用于星系红移目录和从弱透镜推断出的周围暗物质信息。在应用于真实的数据之前,将使用对暗物质和暗物质中星系的真实模拟和水模拟来开发该方法。 本研究将探讨最佳的方法,以实现快速收敛,在寻找当地和全球最低,并旨在产生更广泛的影响,以研究领域(例如神经网络)在天文学以外的工具开发的非该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marginal unbiased score expansion and application to CMB lensing
边际无偏分数扩展及其在 CMB 透镜中的应用
  • DOI:
    10.1103/physrevd.105.103531
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Millea, Marius;Seljak, Uroš
  • 通讯作者:
    Seljak, Uroš
Translation and rotation equivariant normalizing flow (TRENF) for optimal cosmological analysis
用于最佳宇宙学分析的平移和旋转等变归一化流 (TRENF)
The relativistic dipole and gravitational redshift on LSS
Disconnected covariance of 2-point functions in large-scale structure
  • DOI:
    10.1088/1475-7516/2019/01/016
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yin Li;Sukhdeep Singh;Byeonghee Yu;Yu Feng;U. Seljak
  • 通讯作者:
    Yin Li;Sukhdeep Singh;Byeonghee Yu;Yu Feng;U. Seljak
FlowPM: Distributed TensorFlow implementation of the FastPM cosmological N-body solver
  • DOI:
    10.1016/j.ascom.2021.100505
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Modi;F. Lanusse;U. Seljak
  • 通讯作者:
    C. Modi;F. Lanusse;U. Seljak
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uros Seljak其他文献

The Subaru FMOS galaxy redshift survey (FastSound). New constraint on gravity theory from redshift space distortions at z~1.4
斯巴鲁 FMOS 星系红移调查 (FastSound)。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Saito;Tobias Baldauf;Zvonimir Vlah;Uros Seljak;Teppei Okumura;Patrick McDonald;Yasushi Kawase;野村龍一;Teppei Okumura
  • 通讯作者:
    Teppei Okumura
FastSound Survey: 1.2<z<1.5 における重力理論のテスト
FastSound Survey:测试 1.2<z<1.5 的重力理论
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Saito;Tobias Baldauf;Zvonimir Vlah;Uros Seljak;Teppei Okumura;Patrick McDonald;Yasushi Kawase;野村龍一;Teppei Okumura;奥村哲平;Yasushi Kawase;野村龍一;Atsushi Miyauchi;Teppei Okumura;奥村哲平
  • 通讯作者:
    奥村哲平
The Secretary Problem with a Choice Function
选择函数的秘书问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Saito;Tobias Baldauf;Zvonimir Vlah;Uros Seljak;Teppei Okumura;Patrick McDonald;Yasushi Kawase;野村龍一;Teppei Okumura;奥村哲平;Yasushi Kawase
  • 通讯作者:
    Yasushi Kawase
Neutrino mass constraint from robust cosmological signals in the BOSS DR11 galaxy clustering
BOSS DR11 星系团中强大的宇宙学信号对中微子质量的约束
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Saito;Tobias Baldauf;Zvonimir Vlah;Uros Seljak;Teppei Okumura;Patrick McDonald;Francisco Villaescusa-Navarro et al.;Gong-Bo Zhao et al.;斎藤 俊;Shun Saito;Shun Saito;斎藤 俊;斎藤 俊;斎藤 俊;斎藤 俊;Shun Saito
  • 通讯作者:
    Shun Saito
Subhalo Abundance and Age Matching to model galaxy-dark matter halo connection of the BOSS CMASS sample
子晕丰度和年龄匹配,用于模拟 BOSS CMASS 样本的星系-暗物质晕连接
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Saito;Tobias Baldauf;Zvonimir Vlah;Uros Seljak;Teppei Okumura;Patrick McDonald;Francisco Villaescusa-Navarro et al.;Gong-Bo Zhao et al.;斎藤 俊
  • 通讯作者:
    斎藤 俊

Uros Seljak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uros Seljak', 18)}}的其他基金

Elements: A new generation of samplers for astronomy and physics
Elements:新一代天文学和物理学采样器
  • 批准号:
    2311559
  • 财政年份:
    2023
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Creating Inference from Machine Learned and Science Based Generative Models
TRIPODS X:RES:协作研究:从机器学习和基于科学的生成模型中创建推理
  • 批准号:
    1839217
  • 财政年份:
    2018
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Standard Grant
CAREER: Investigation of Cosmological Models with Weak Lensing
职业:弱透镜宇宙学模型的研究
  • 批准号:
    0810820
  • 财政年份:
    2007
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Continuing Grant
CAREER: Investigation of Cosmological Models with Weak Lensing
职业:弱透镜宇宙学模型的研究
  • 批准号:
    0132953
  • 财政年份:
    2002
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Fellowship
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
FaVoRe - Fast Volumetric Reconstruction
FaVoRe - 快速体积重建
  • 批准号:
    10083559
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Collaborative R&D
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
A self-driven intramedullary nail for the reconstruction of large bone defects
用于重建大骨缺损的自驱动髓内钉
  • 批准号:
    MR/Z503836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
3DFace@Home: A pilot study for robust and highly accurate facial 3D reconstruction from mobile devices for facial growth monitoring at home
3DFace@Home:一项通过移动设备进行稳健且高精度面部 3D 重建的试点研究,用于家庭面部生长监测
  • 批准号:
    EP/X036642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Research Grant
Ethnography of Archaeology and Architectural Reconstruction
考古民族志与建筑重建
  • 批准号:
    23K25438
  • 财政年份:
    2024
  • 资助金额:
    $ 52.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了