SaTC: CORE: Small: FIRMA: Personalized Cross-Layer Continuous Authentication
SaTC:核心:小型:FIRMA:个性化跨层连续身份验证
基本信息
- 批准号:1814557
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important problem in computer security is verifying that people using computing devices are authorized to use them, not just when they first sign on to the device but during the whole time they are using them. Most existing continuous authentication schemes impose burdens on users, for instance, when systems quickly log users out and require frequent re-entry of passwords. This project will build and evaluate FIRMA, a user-transparent, continuous authentication software framework that collects usage data, targeted at corporate security contexts where such monitoring can be done. To the extent that people have unique but recurrent patterns of use -- itself an interesting research question -- FIRMA can estimate the likelihood that the current user is still an authorized, authenticated user based on how current use patterns compare to historical ones. Doing this might both reduce the burden of frequent re-authentication and provide early warning signs of malicious activity by malware or insider attacks. Further, by leveraging the unique way people use computers, FIRMA will be diverse by design -- adversaries will not be able to predict how specific individuals use their devices and their attacks will fail in many devices -- thereby "herd-protecting" security by making it difficult for malware to automatically spread across many devices. If successful, the project could have real impact on corporate security, reducing data breaches and downtime while improving the usability of these systems. The work will also have educational and training impacts through interdisciplinary collaboration and education between computer engineering and psychology, involvement of undergraduate researchers, and efforts to recruit female and minority students to participate in the project. FIRMA will be composed of a kernel module, which will continuously record at the operating system level all events related to user activities: user events (mouse clicks, keystrokes, and timestamps), processes, and the files and network events created as a consequence of user-driven activity. These events, recorded during a training period that represents a user's typical computer usage, will be applied to create a user profile using a novel Generative Adversarial Network (GAN)-based deep learning approach called AttenGAN/P-GAN, which will be composed of a user profile generator and a runtime classifier. AttenGAN/P-GAN will both provide new deep learning tools for processing sequences of unknown length as well as improved ability to train classifiers for anomaly detection without negative samples. The runtime classifier will continuously observe events generated by FIRMA's extractor, leverage the user profile to classify the current window of events being observed as normal or anomalous, and update the current user confidence score. This classifier will be resilient to benign profile changes caused by fluctuations in a user's activity pattern caused by external factors, such as travel (change of time zone) or change of groups or projects. FIRMA's evaluation will comprise four-week captures of natural computer usage data from recruited computer users. This evaluation will consider usability, classification accuracy, and false positives in the presence of various types of anomalies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机安全中的一个重要问题是验证使用计算设备的人是否有权使用它们,不仅是在他们第一次登录设备时,而且是在他们使用设备的整个时间内。例如,当系统快速注销用户并要求频繁重新输入密码时,大多数现有的连续身份验证方案会给用户带来负担。该项目将建立和评估Firma,这是一个对用户透明的、持续的认证软件框架,它收集使用数据,目标是可以进行这种监测的公司安全环境。在某种程度上,人们有独特但重复的使用模式--这本身就是一个有趣的研究问题--Firma可以根据当前使用模式与历史使用模式的比较来估计当前用户仍然是授权的、经过身份验证的用户的可能性。这样做既可以减少频繁重新身份验证的负担,又可以通过恶意软件或内部攻击提供恶意活动的早期预警信号。此外,通过利用人们使用计算机的独特方式,Firma在设计上将是多样化的--对手将无法预测特定个人如何使用他们的设备,他们的攻击将在许多设备上失败--从而通过使恶意软件难以在许多设备上自动传播来“羊群保护”安全。如果成功,该项目可能会对企业安全产生真正的影响,减少数据泄露和停机时间,同时提高这些系统的可用性。这项工作还将通过计算机工程和心理学之间的跨学科合作和教育,本科生研究人员的参与,以及努力招募女性和少数族裔学生参与该项目,产生教育和培训效果。Firma将由一个内核模块组成,该模块将在操作系统级别持续记录与用户活动相关的所有事件:用户事件(鼠标点击、击键和时间戳)、进程以及作为用户驱动活动的结果而创建的文件和网络事件。在代表用户典型计算机使用的训练期间记录的这些事件将被应用于使用称为AttenGAN/P-GAN的基于生成性对抗性网络(GAN)的新型深度学习方法来创建用户简档,该方法将由用户简档生成器和运行时分类器组成。AttenGAN/P-GAN将为处理未知长度的序列提供新的深度学习工具,并改进训练分类器的能力,以便在没有负样本的情况下进行异常检测。运行时分类器将持续观察由Firma的提取程序生成的事件,利用用户配置文件将正在观察的事件的当前窗口分类为正常或异常,并更新当前用户置信度分数。该分类器将对由外部因素引起的用户活动模式的波动引起的良性简档变化具有弹性,例如旅行(时区改变)或小组或项目的改变。Firma的评估将包括从招募的计算机用户那里获取为期四周的自然计算机使用数据。这项评估将考虑可用性、分类准确性和在存在各种类型异常的情况下的误报。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Criterion of Reconstruction-based Anomaly Detection for Sparse-binary Data
- DOI:10.1109/globecom42002.2020.9322452
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Heng Qiao;D. Oliveira;Dapeng Oliver Wu
- 通讯作者:Heng Qiao;D. Oliveira;Dapeng Oliver Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renato Figueiredo其他文献
On the Performance and Cost of Cloud-Assisted Multi-Path Bulk Data Transfer
云辅助多路径批量数据传输的性能和成本
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa - 通讯作者:
Kohei Ichikawa
Extending PRAGMA-ENT for End Users using IPOP Overlay Networks
使用 IPOP 覆盖网络为最终用户扩展 PRAGMA-ENT
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa - 通讯作者:
Kohei Ichikawa
A Pipeline for Deep Learning with Specimen Images in iDigBio - Applying and Generalizing an Examination of Mercury Use in Preparing Herbarium Specimens
iDigBio 中标本图像深度学习的流程 - 应用和推广汞在制备植物标本室标本中的使用检查
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Matthew Collins;G. Yeole;P. Frandsen;Rebecca B. Dikow;Sylvia S. Orli;Renato Figueiredo - 通讯作者:
Renato Figueiredo
Investigating the Performance and Scalability of Kubernetes on Distributed Cluster of Resource-Constrained Edge Devices
研究 Kubernetes 在资源受限边缘设备分布式集群上的性能和可扩展性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vahid Daneshmand;Renato Figueiredo;Kohei Ichikawa;Keichi Takahashi;Kundjanasith Thonglek and Kensworth Subratie - 通讯作者:
Kundjanasith Thonglek and Kensworth Subratie
保育者は保育カンファレンスを行うことで何を学ぶのか?ー質的研究のメタ統合の試みからー
托儿工作者通过举办托儿会议学到了什么?
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa;上田敏丈 - 通讯作者:
上田敏丈
Renato Figueiredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renato Figueiredo', 18)}}的其他基金
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Elements: FaaSr: Enabling Cloud-native Event-driven Function-as-a-Service Computing Workflows in R
协作研究:要素:FaaSr:在 R 中启用云原生事件驱动的函数即服务计算工作流程
- 批准号:
2311123 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
I-Corps: Software-Defined Overlay Virtual Private Network for Edge Computing
I-Corps:用于边缘计算的软件定义的覆盖虚拟专用网络
- 批准号:
2134548 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: GOALI: Predicting and Labeling Email Phishing from Social Influence Cues and User Characteristics.
SaTC:核心:小:GOALI:根据社会影响线索和用户特征预测和标记电子邮件网络钓鱼。
- 批准号:
2028734 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Elements: EdgeVPN: Seamless Secure Virtual Networking for Edge and Fog Computing
协作研究:要素:EdgeVPN:用于边缘和雾计算的无缝安全虚拟网络
- 批准号:
2004441 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
合作研究:CIBR:网络基础设施支持水生生态系统预测的端到端工作流程
- 批准号:
1933102 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: REVELARE: A Hardware-Supported Dynamic Information Flow Tracking Framework for IoT Security and Forensics
SaTC:核心:媒介:协作:REVELARE:用于物联网安全和取证的硬件支持的动态信息流跟踪框架
- 批准号:
1801599 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: PerSoNet: Overlay Virtual Private Networks Spanning Personal Clouds and Social Peers
NetS:小型:PerSoNet:跨越个人云和社交对等的覆盖虚拟专用网络
- 批准号:
1527415 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Exploring Energy-Efficient GPGPUs Through Emerging Technology Integration
SHF:小型:协作研究:通过新兴技术集成探索节能 GPGPU
- 批准号:
1320100 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Peer-to-Peer Overlay Virtual Network for Cloud Computing Research
SI2-SSE:用于云计算研究的点对点覆盖虚拟网络
- 批准号:
1339737 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
- 批准号:
2310470 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
- 批准号:
2321649 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant














{{item.name}}会员




