Information and Randomness in Dynamic Games

动态博弈中的信息和随机性

基本信息

  • 批准号:
    1814876
  • 负责人:
  • 金额:
    $ 24.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Cooperation forms the cornerstone for all successful social species from ants to humans. Yet the emergence of cooperation and fairness in biological and social systems is one of the great puzzles. How did it arise that humans often seek fair outcomes, when natural selection is inherently unfair? Evolutionary game theory, a mathematical framework to capture the dynamics of decisions, provides some answers. The theory finds applications in economics, military strategy, and biology. This project develops a more extensive theory of distributed social learning and emergent group dynamics, combining aspects of evolutionary game theory with statistical mechanics and machine learning to explain the emergence of cooperation, fairness, and other social dynamics that do not fit well into traditional approaches. The mathematical framework developed can be applied to problems in evolutionary psychology and artificial intelligence. In particular, some results may help to inform policy makers on the origins of differing behaviors in different societies. Graduate students are engaged in the research of the project.This project develops a coherent theory of distributed social learning and emergent group phenomena in complex systems, merging aspects of evolutionary game theory with statistical mechanics and machine learning. Using public goods games and ultimatum style games as a foundation, the investigators study the evolutionary dynamics of finite populations whose encounters are described in game-theoretic terms using simple parameterized rules and random interactions. An aspect of these evolutionary systems is convergence to non-Nash fixed points, including a sensitive dependence on initial conditions and sample paths realized. Basins of attraction for these fixed points are characterized using techniques from topological data analysis. Using insights from statistical mechanics, the distributions of potential population fixed points are derived and related to the information content in the dynamical system; here the speed of spatial interactions plays a role analogous to that of temperature in a gas of interacting particles. Possible equilibrium states in these dynamical systems are categorized, along with the corresponding equilibrium point distributions. Quantifying information transfer among interacting or moving agents is an additional goal of the project. So also is determining the impact of commoditized information, whether beneficial or harmful, on equilibrium distributions and convergence. Graduate students are engaged in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从蚂蚁到人类,合作是所有成功的社会物种的基石。然而,合作与公平在生物和社会系统中的出现是一个巨大的谜题。当自然选择本质上是不公平的时候,人类是如何寻求公平的结果的呢?进化博弈论,一个捕捉决策动态的数学框架,提供了一些答案。这一理论在经济学、军事战略和生物学中都有应用。该项目发展了一个更广泛的分布式社会学习和新兴群体动力学理论,将进化博弈论与统计力学和机器学习相结合,以解释合作、公平和其他不适合传统方法的社会动力学的出现。所开发的数学框架可以应用于进化心理学和人工智能中的问题。特别是,一些结果可能有助于决策者了解不同社会中不同行为的起源。研究生从事该项目的研究。本项目发展了分布式社会学习和复杂系统中涌现群体现象的连贯理论,融合了进化博弈论与统计力学和机器学习的各个方面。以公共物品博弈和最后通牒式博弈为基础,研究人员研究了有限种群的进化动力学,这些种群的相遇是用博弈论术语描述的,使用简单的参数化规则和随机相互作用。这些进化系统的一个方面是收敛到非纳什不动点,包括对初始条件和实现的样本路径的敏感依赖。利用拓扑数据分析技术对这些不动点的吸引盆地进行表征。利用统计力学的见解,导出了潜在总体不动点的分布,并将其与动力系统中的信息含量联系起来;在这里,空间相互作用的速度所起的作用类似于粒子相互作用的气体中的温度。对这些动力系统中可能的平衡状态进行了分类,并给出了相应的平衡点分布。量化交互或移动代理之间的信息传递是该项目的另一个目标。确定商品化信息对均衡分布和趋同的影响,无论是有益的还是有害的,也同样重要。研究生从事该项目的研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imitation of Success Leads to Cost of Living Mediated Fairness in the Ultimatum Game
  • DOI:
    10.1016/j.physa.2021.126328
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunong Chen;A. Belmonte;C. Griffin
  • 通讯作者:
    Yunong Chen;A. Belmonte;C. Griffin
Higher-order dynamics in the replicator equation produce a limit cycle in rock-paper-scissors
  • DOI:
    10.1209/0295-5075/accd93
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher H. Griffin;R. Wu
  • 通讯作者:
    Christopher H. Griffin;R. Wu
Dynamics of a binary option market with exogenous information and price sensitivity
  • DOI:
    10.1016/j.cnsns.2022.106994
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Gampe;C. Griffin
  • 通讯作者:
    Hannah Gampe;C. Griffin
Stability of dining clubs in the Kolkata Paise Restaurant Problem with and without cheating
Modeling genome-wide by environment interactions through omnigenic interactome networks
  • DOI:
    10.1016/j.celrep.2021.109114
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Wang, Haojie;Ye, Meixia;Wu, Rongling
  • 通讯作者:
    Wu, Rongling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Belmonte其他文献

Elastic-plated gravity currents
弹性板重力流
Fragment distributions for brittle rods with patterned breaking probabilities
  • DOI:
    10.1016/j.physa.2008.09.015
  • 发表时间:
    2008-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Higley;Andrew Belmonte
  • 通讯作者:
    Andrew Belmonte

Andrew Belmonte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Belmonte', 18)}}的其他基金

Guided Evolutionary Games for Influencing Interacting Agents' Behavior in Large Populations
影响大量群体中相互作用主体行为的引导进化博弈
  • 批准号:
    1463482
  • 财政年份:
    2015
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Reactive Instabilities, Colloids, and Interfacial Flows: Experiments, Modeling, and Numerics
合作研究:反应不稳定性、胶体和界面流动:实验、建模和数值
  • 批准号:
    1217177
  • 财政年份:
    2012
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
CAREER: Macromolecular Fluid Flow: Experiments, Equations, and Education
职业:高分子流体流动:实验、方程和教育
  • 批准号:
    0094167
  • 财政年份:
    2001
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Continuing Grant
International Postdoctoral Fellows Program: Dynamics and Pinning of Spiral Wave Defects in Active Media
国际博士后项目:活性介质中螺旋波缺陷的动力学和钉扎
  • 批准号:
    9406090
  • 财政年份:
    1994
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Fixed Amount Award

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
  • 批准号:
    EP/X040089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
  • 批准号:
    22KJ1845
  • 财政年份:
    2023
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Robust Quantum Randomness for Industry
工业领域强大的量子随机性
  • 批准号:
    10041956
  • 财政年份:
    2023
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Collaborative R&D
Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
  • 批准号:
    2247078
  • 财政年份:
    2023
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Continuing Grant
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
  • 批准号:
    2312540
  • 财政年份:
    2023
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
  • 批准号:
    2302988
  • 财政年份:
    2023
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
Taming the randomness of random lasers with reconfigurable active particle assemblies
利用可重构的活性粒子组件来驯服随机激光器的随机性
  • 批准号:
    2303189
  • 财政年份:
    2023
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
  • 批准号:
    2230963
  • 财政年份:
    2022
  • 资助金额:
    $ 24.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了