Imperfect Patterns-Existence, Stability, and Essential Spectrum

不完美模式——存在性、稳定性和本质谱

基本信息

  • 批准号:
    1815079
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

How do zebras get their stripes? How do cell membranes get their shapes and keep from bursting into pieces? These two seemingly disconnected scientific topics can actually be investigated via a general mathematical framework outlined within this project. Such a study not only applies to the specific topics above, but also to any physical systems arising from similar mathematical models, such as sand patterns in deserts, cloud patterns in the sky, cell fission/fusion processes, cast ionomers in solar cells, and network morphology in soapy water. The aim of this project is to systematically understand imperfections of patterns, which are ubiquitous in nature and pivotal in various scientific settings and technical applications. The investigator studies defects in periodic patterns, with an application to understanding the development of grain boundaries in materials; he also studies defects in bilayers such as arise in cell membranes. Part of the project includes research experience opportunities for undergraduate students.The investigator applies dynamical systems techniques, combined with functional analysis, differential geometry, asymptotic analysis, and large deviation theory, to study pattern formation, with an emphasis on the role of the essential spectrum in the formation and stability of defects of periodic patterns and bilayer interfaces. The most interesting and challenging case occurs when the essential spectrum touches the origin; here he seeks explicit illustrations of formation mechanisms of stripe patterns, amphiphilic structures, and their imperfections. The classical Swift-Hohenberg equation provides a prototype for rigorous studies of periodic patterns. Firstly, the imperfections of periodic patterns to instantaneous, constant, and random perturbations are investigated. Secondly, in the case of instability, the local biases and the rotational symmetry of the system together give rise to various line and point defects, such as grain boundaries, dislocations, and disclinations. The investigator studies grain boundaries, providing a novel functional analytical machinery to construct deformed patterns. He also investigates defects of amphiphilic morphology in the functionalized Cahn-Hilliard FCH) setting, suggesting mechanisms of the formation of lipid rafts, end caps and Y-junctions. Here the essential spectrum of the linearized operator at bilayer interfaces is continuous up to the origin but is not "simple." It serves as a benchmark for understanding the role of essential spectra. Part of the project includes research experience opportunities for undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
斑马身上的条纹是怎么来的? 细胞膜是如何形成它们的形状并防止破裂成碎片的? 这两个看似无关的科学主题实际上可以通过该项目中概述的一般数学框架进行研究。 这样的研究不仅适用于上述特定主题,而且适用于任何由类似数学模型产生的物理系统,例如沙漠中的沙模式,天空中的云模式,电池裂变/聚变过程,太阳能电池中的离聚物,以及肥皂水中的网络形态。 该项目的目的是系统地了解模式的不完美性,这些不完美性在自然界中普遍存在,在各种科学环境和技术应用中至关重要。 研究人员研究周期性图案中的缺陷,并应用于理解材料中晶界的发展;他还研究了双层中的缺陷,如细胞膜中出现的缺陷。 该项目的一部分包括为本科生提供研究经验的机会。研究者应用动力系统技术,结合泛函分析,微分几何,渐近分析和大偏差理论,研究图案的形成,重点是基本光谱在周期图案和双层界面缺陷的形成和稳定性中的作用。 最有趣和最具挑战性的情况下发生的基本光谱触及的起源;在这里,他寻求明确的说明条纹图案的形成机制,两亲性结构,以及它们的缺陷。 经典的Swift-Hohenberg方程为周期性模式的严格研究提供了一个原型。 首先,研究了周期方向图对瞬时、常值和随机扰动的不完美性。 第二,在不稳定的情况下,系统的局部偏置和旋转对称性一起引起各种线和点缺陷,例如晶界、位错和向错。 研究员研究晶界,提供了一种新的功能分析机器来构建变形模式。 他还研究了功能化Cahn-Hilliard FCH)设置中两亲形态的缺陷,提出了形成脂筏、端帽和Y-连接的机制。 在这里,双层界面上线性化算子的本质谱是连续的,直到原点,但不是“简单的”。“它是理解基本光谱作用的基准。 该项目的一部分包括为本科生提供研究经验的机会。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entire solutions of diffusive Lotka-Volterra system
  • DOI:
    10.1016/j.jde.2020.07.006
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    King-Yeung Lam;R. Salako;Qi-liang Wu
  • 通讯作者:
    King-Yeung Lam;R. Salako;Qi-liang Wu
Orbital stability of the sum of smooth solitons in the Degasperis-Procesi equation
Degasperis-Procesi 方程中光滑孤子之和的轨道稳定性
Undulated bilayer interfaces in the planar functionalized Cahn-Hilliard equation
平面功能化 Cahn-Hilliard 方程中的波状双层界面
Spectral stability of smooth solitary waves for the Degasperis-Procesi equation
Degasperis-Procesi 方程的平滑孤立波的谱稳定性
Orbital stability of smooth solitary waves for the Degasperis-Procesi equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiliang Wu其他文献

Nonlinear dynamics analysis of stochastic delay rotor system with fractional damping
具有分数阻尼的随机延迟转子系统的非线性动力学分析
  • DOI:
    10.1016/j.ast.2025.110307
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Minghui Yao;Yuejuan Yang;Yan Niu;Qiliang Wu;Cong Wang;Renduo Song
  • 通讯作者:
    Renduo Song
Vibration analysis of Ti-SiC composite airfoil blade based on machine learning
基于机器学习的 Ti-SiC 复合叶栅叶片振动分析
  • DOI:
    10.1016/j.enganabound.2024.105894
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Minghui Yao;Shuaichao Wang;Yan Niu;Qiliang Wu;Bin Bai;Cong Wang
  • 通讯作者:
    Cong Wang
Size-dependent mechanics of viscoelastic carbon nanotubes: Modeling, theoretical and numerical analysis
粘弹性碳纳米管的尺寸相关力学:建模、理论和数值分析
  • DOI:
    10.1016/j.rinp.2020.103383
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Mingyuan Li;Qiliang Wu;Bin Bai
  • 通讯作者:
    Bin Bai
Nonlinear internal resonances of rotating twisted multilayer functionally graded graphene nanoplatelet-reinforced composite blades
旋转扭曲多层功能梯度石墨烯纳米片增强复合材料叶片的非线性内共振
  • DOI:
    10.1016/j.chaos.2025.116340
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Yan Niu;Renduo Song;Yuejuan Yang;Minghui Yao;Shaowu Yang;Qiliang Wu
  • 通讯作者:
    Qiliang Wu
Modelling, Analyzing and Simulating the Complex Dynamics of Mass Sensors Based on a Functionally Graded Nanobeam Model
基于功能梯度纳米束模型对质量传感器的复杂动力学进行建模、分析和仿真
  • DOI:
    10.1016/j.apm.2022.04.002
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Mingyuan Li;Wei Zhang;Qiliang Wu
  • 通讯作者:
    Qiliang Wu

Qiliang Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Uncovering the evolutionary patterns of the Aculeata stinger
揭示 Aculeata 毒刺的进化模式
  • 批准号:
    24K18174
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
  • 批准号:
    2346471
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
  • 批准号:
    2333917
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
AGS-PRF: Understanding Historical Trends in Tropical Pacific Sea Surface Temperature Patterns
AGS-PRF:了解热带太平洋海面温度模式的历史趋势
  • 批准号:
    2317224
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Fellowship Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了