Mathematical Studies of Magnetohydrodynamics with Hall Effect
霍尔效应磁流体动力学的数学研究
基本信息
- 批准号:1815069
- 负责人:
- 金额:$ 18.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetic reconnection is a fundamental process in highly conducting plasmas, which allows for rapid changes in the configuration of the magnetic flux lines, with the conversion of magnetic to kinetic energy. Solar flares, violent events with significant impact to telecommunications and the electric grid, may involve magnetic reconnection in a large scale. Magnetic reconnection is inherently a multi-scale process and causes difficulties in laboratory experimental study, satellite observations, and computational simulations. During magnetic reconnection, the magnetic force can create thin localized region wherein the elevated voltage difference generates intense electric currents and dissipation - the Hall effect. The Hall Magnetohydrodynamics (Hall MHD) model has recently received increasing attention because of its improvements in predicting the fast-changing nature of magnetic reconnection compared to other models. Nevertheless, the mathematical theory of this model is far from being complete. This project will address fundamental mathematical questions for the Hall MHD model and provide theoretical insights for experiments and numerical simulations. The project will involve a graduate student in the research. The Hall MHD model is mathematically challenging due to the usual convective nonlinearities and the additional source term given by the Hall effect. The main objectives are: 1) Explore the largest possible space of well-posedness corresponding to the major scalings in the system. 2) Search the optimal Sobolev spaces in which the model is well-posed. 3) Examine ill-posedness of solutions in some physically relevant spaces. 4) Seek minimal conditions for weak solutions to satisfy energy identity. 5) Study the asymptotic behavior of solutions and stability of the steady state. The project will combine known tools from harmonic analysis and partial differential equations, and develop new methods to study these questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
磁重联是高导电等离子体中的一个基本过程,它允许磁通线的配置快速变化,并将磁能转换为动能。太阳耀斑是对电信和电网有重大影响的剧烈事件,可能涉及大规模的磁重联。磁场重联是一个多尺度过程,给实验室实验研究、卫星观测和计算机模拟带来了困难。在磁重联期间,磁力可以产生薄的局部区域,其中升高的电压差产生强电流和耗散-霍尔效应。霍尔磁流体动力学(Hall MHD)模型最近受到越来越多的关注,因为它在预测磁场重联的快速变化的性质相比,其他模型的改进。然而,这个模型的数学理论还远未完成。该项目将解决霍尔MHD模型的基本数学问题,并为实验和数值模拟提供理论见解。该项目将涉及一名研究生的研究。霍尔MHD模型是数学上的挑战,由于通常的对流非线性和额外的源项由霍尔效应。主要目标是:1)探索系统中主要标度对应的最大可能适定性空间。2)搜索模型适定的最优Sobolev空间。3)在一些物理相关的空间中检查解的不适定性。4)求弱解满足能量恒等式的最小条件。5)研究解的渐近性态和定态的稳定性。该项目将结合联合收割机已知的工具,从谐波分析和偏微分方程,并开发新的方法来研究这些问题。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blow-up of a dyadic model with intermittency dependence for the Hall MHD
霍尔 MHD 具有间歇依赖性的二元模型的放大
- DOI:10.1016/j.physd.2021.133066
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dai, Mimi
- 通讯作者:Dai, Mimi
Applications of harmonic analysis techniques to regularity problems of dissipative equations
- DOI:10.1090/conm/748/15055
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Mimi Dai;Han Liu
- 通讯作者:Mimi Dai;Han Liu
Discontinuity of weak solutions to the 3D NSE and MHD equations in critical and supercritical spaces
临界和超临界空间中 3D NSE 和 MHD 方程弱解的不连续性
- DOI:10.1016/j.jmaa.2019.123493
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Cheskidov, Alexey;Dai, Mimi
- 通讯作者:Dai, Mimi
Local well-posedness of the Hall-MHD system in $H^s(\mathbb R^n)$ with $s>n/2$
霍尔 MHD 系统在 $H^s(mathbb R^n)$ 中的局部适定性,其中 $s>n/2$
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Dai, Mimi
- 通讯作者:Dai, Mimi
Phenomenologies of intermittent Hall MHD turbulence
- DOI:10.3934/dcdsb.2021285
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Mimi Dai
- 通讯作者:Mimi Dai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mimi Dai其他文献
Ill-posedness of the Navier-Stokes and magneto-hydrodynamics systems
纳维-斯托克斯和磁流体动力学系统的不适定性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Cheskidov;Mimi Dai - 通讯作者:
Mimi Dai
Regularity problem for the nematic LCD system with Q-tensor in $\mathbb R^3$
- DOI:
- 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai - 通讯作者:
Mimi Dai
Regularity Problem for the Nematic LCD System with Q-tensor in ℝ3
- DOI:
10.1137/16m109137x - 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai - 通讯作者:
Mimi Dai
Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}_{\infty}^{-1,\infty}$
$dot{B}_{infty}^{-1,infty}$ 中不可压缩磁流体动力系统的标准膨胀
- DOI:
10.57262/ade/1355703204 - 发表时间:
2011 - 期刊:
- 影响因子:1.4
- 作者:
Mimi Dai;J. Qing;M. Schonbek - 通讯作者:
M. Schonbek
The Existence of a Global Attractor for the Forced Critical Surface Quasi-Geostrophic Equation in $$L^2$$
- DOI:
10.1007/s00021-017-0324-7 - 发表时间:
2017-05-30 - 期刊:
- 影响因子:1.300
- 作者:
Alexey Cheskidov;Mimi Dai - 通讯作者:
Mimi Dai
Mimi Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mimi Dai', 18)}}的其他基金
Pathological solutions of fluid equations
流体方程的病理解
- 批准号:
2308208 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Mathematical Analysis of Magnetohydrodynamic Flows with Hall Effect
霍尔效应磁流体动力流的数学分析
- 批准号:
2009422 - 财政年份:2020
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
相似海外基金
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
- 批准号:
502607 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Discovery Early Career Researcher Award
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006232/1 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006151/1 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Research Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
- 批准号:
2349136 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
- 批准号:
2337194 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
- 批准号:
EP/X031624/1 - 财政年份:2024
- 资助金额:
$ 18.88万 - 项目类别:
Research Grant