Pathological solutions of fluid equations
流体方程的病理解
基本信息
- 批准号:2308208
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project studies some fundamental open questions concerning the equations of fluid motion. The equations, widely used by physicists and engineers for real-life applications, were introduced almost two centuries ago. However, some essential questions, such as the existence and uniqueness of classical solutions, are still not answered. Therefore, a notion of weak solutions, whose existence is known, has been extensively used by mathematicians. The project will demonstrate a limitation of this notion by constructing weak solutions with various unphysical properties. On the other hand, the project proposes to prove the existence of physical solutions that are expected to describe turbulent flows. This project will also provide opportunities for the involvement of graduate students in the project. In the past couple of decades, mathematical fluid dynamics has been highlighted by numerous constructions of solutions to fluid equations that exhibit pathological or wild behavior, such as loss of the energy balance, non-uniqueness, singularity formation, and dissipation anomaly. Interesting from the mathematical point of view, these solutions provide counterexamples to various well-posedness results in supercritical spaces. Moreover, these constructive approaches are becoming more and more relevant from the physical point of view as well. Indeed, a fundamental physical property of turbulent flows is the existence of the energy cascade. Conjectured by Kolmogorov, the energy cascade has been observed both experimentally and numerically but had been difficult to produce analytically. The purpose of this project is to use state-of-the-art methods, such as convex integration and new developments in efficient mixing, to construct not only mathematically pathological, but also physically realistic solutions of fluid equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目研究有关流体运动方程的一些基本的公开问题。这些被物理学家和工程师广泛用于实际应用的方程是近两个世纪前提出的。然而,一些基本问题,如经典解的存在性和唯一性,仍然没有得到回答。因此,弱解的概念,其存在性是已知的,已被数学家广泛使用。该项目将通过构造具有各种非物理性质的弱解来证明这一概念的局限性。另一方面,该项目建议证明存在预期描述湍流的物理解。该项目还将为研究生参与该项目提供机会。在过去的几十年里,数学流体动力学已经突出了许多结构的解决方案的流体方程,表现出病态或野生的行为,如损失的能量平衡,非唯一性,奇点的形成,和耗散异常。有趣的是,从数学的角度来看,这些解决方案提供了反例,各种适定性的结果在超临界空间。此外,这些建设性的方法从物理角度来看也变得越来越相关。实际上,湍流的一个基本物理性质是能量级联的存在。由柯尔莫哥洛夫猜想,能量级联已经在实验和数值上观察到,但很难解析地产生。该项目的目的是使用最先进的方法,如凸积分和有效混合的新发展,不仅构建数学病理,而且物理现实的流体方程的解决方案。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mimi Dai其他文献
Ill-posedness of the Navier-Stokes and magneto-hydrodynamics systems
纳维-斯托克斯和磁流体动力学系统的不适定性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Cheskidov;Mimi Dai - 通讯作者:
Mimi Dai
Local well-posedness for the Hall-MHD system in optimal Sobolev spaces
- DOI:
10.1016/j.jde.2021.04.019 - 发表时间:
2018-03 - 期刊:
- 影响因子:2.4
- 作者:
Mimi Dai - 通讯作者:
Mimi Dai
Regularity problem for the nematic LCD system with Q-tensor in $\mathbb R^3$
- DOI:
- 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai - 通讯作者:
Mimi Dai
Regularity Problem for the Nematic LCD System with Q-tensor in ℝ3
- DOI:
10.1137/16m109137x - 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai - 通讯作者:
Mimi Dai
Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}_{\infty}^{-1,\infty}$
$dot{B}_{infty}^{-1,infty}$ 中不可压缩磁流体动力系统的标准膨胀
- DOI:
10.57262/ade/1355703204 - 发表时间:
2011 - 期刊:
- 影响因子:1.4
- 作者:
Mimi Dai;J. Qing;M. Schonbek - 通讯作者:
M. Schonbek
Mimi Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mimi Dai', 18)}}的其他基金
Mathematical Analysis of Magnetohydrodynamic Flows with Hall Effect
霍尔效应磁流体动力流的数学分析
- 批准号:
2009422 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Mathematical Studies of Magnetohydrodynamics with Hall Effect
霍尔效应磁流体动力学的数学研究
- 批准号:
1815069 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
University of Derby and Thermal Fluid Solutions 23_24 R1
德比大学和热流体解决方案 23_24 R1
- 批准号:
10074908 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Knowledge Transfer Partnership
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
- 批准号:
2346799 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
- 批准号:
RGPIN-2022-03404 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
- 批准号:
2055019 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Ultrafast 2DIR Studies of Dynamics in Dense Gas and Supercritical Fluid Solutions
稠密气体和超临界流体溶液动力学的超快 2DIR 研究
- 批准号:
2102427 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Engineering Solutions to Reduce the Environmental Impact of the Energy Sector - Salt Effects on Fluid Properties under Confinement
减少能源行业环境影响的工程解决方案 - 盐对约束下流体特性的影响
- 批准号:
2269391 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Studentship
HIgh-precision numerical analysis of fluid phenomena by the method of fundamental solutions
利用基本解法对流体现象进行高精度数值分析
- 批准号:
18K13455 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a novel mobile health tool for age-specific dehydration assessment and management in patients with diarrheal disease
开发一种新型移动健康工具,用于腹泻病患者的特定年龄脱水评估和管理
- 批准号:
10202572 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Mathematical analysis of diffusion and diffusion wave property for the solutions to the system of the viscous fluid flow
粘性流体流动系统解的扩散和扩散波性质的数学分析
- 批准号:
18K03368 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rheology and fluid dynamics of surfactant solutions with flow-induced structure
具有流动诱导结构的表面活性剂溶液的流变学和流体动力学
- 批准号:
1803090 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant