SaTC: CORE: Small: Adversarial Learning via Modeling Interpretation

SaTC:核心:小:通过建模解释进行对抗性学习

基本信息

  • 批准号:
    1816497
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) models are increasingly important in society, with applications including malware detection, online content filtering and ranking, and self-driving cars. However, these models are vulnerable to adversaries attacking them by submitting incorrect or manipulated data with the goal of causing errors, causing potential harm to both the decisions the models make and the systems and people who rely on them. Further, many common ML models make decisions in ways that are hard for humans to understand, leading to calls to develop modeling techniques that make the models more explainable and interpretable. This project sits at the intersection of adversarial and explainable ML, with the key insight that as models become more interpretable in terms of both the individual decisions they make and the rules they use to distinguish between different decisions, this interpretability will likely provide additional information that can be used to both create and defend against adversarial attacks. The overall project goal is to test this insight and contribute to both the security and data mining communities by developing an adversarial learning framework that leverages interpretability of ML models and results to both identify and mitigate the risks of adversarial attacks, especially in the context of big data. The project also contains a significant educational component, including incorporating the research into curriculum development and providing research opportunities to undergraduate and underrepresented students.The project consists of three research thrusts. The first is to develop effective attacking strategies by analyzing modeling interpretation from three aspects including instance level, class level, and a specific group of deep neural networks. This enables more effective attacks to be initiated through understanding the underlying working mechanisms of ML models. The second thrust is to focus on developing defensive strategies to improve the robustness of ML models against these adversarial attacks. The proposed defensive strategies are aimed at the three major steps in a typical knowledge discovery pipeline including training data refinement, model architecture modification, and test data filtering. While existing efforts are based on continuously probing built systems and updating model parameters once prediction mistakes are discovered, the proposed work provides a proactive way to tackle the problem. The third thrust is to develop adversarial learning algorithms to deal with challenges and take advantage of opportunities brought by big data. Specifically, the developed adversarial attacking and defensive algorithms will deal with large-scale, heterogeneous, and relational data. This will enable the proposed algorithms to scale to real-world applications demonstrating challenging data characteristics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)模型在社会中越来越重要,应用程序包括恶意软件检测、在线内容过滤和排名以及自动驾驶汽车。然而,这些模型很容易受到攻击者的攻击,他们提交不正确或被篡改的数据,目的是造成错误,从而对模型做出的决策以及依赖它们的系统和人员造成潜在损害。此外,许多常见的ML模型以人类难以理解的方式进行决策,这导致了开发建模技术的呼声,使模型更易于解释和解释。这个项目位于对抗性和可解释性ML的交叉点上,关键的洞察力是,随着模型在他们做出的个人决策和他们用来区分不同决策的规则方面变得更具解释性,这种可解释性可能会提供可用于创建和防御对手攻击的额外信息。项目的总体目标是测试这一洞察力,并通过开发一个对抗性学习框架来为安全和数据挖掘社区做出贡献,该框架利用ML模型和结果的可解释性来识别和降低对抗性攻击的风险,特别是在大数据的背景下。该项目还包含一个重要的教育部分,包括将研究纳入课程发展,并为本科生和代表性不足的学生提供研究机会。该项目包括三个研究推动力。首先是从实例级、类级和特定的一组深层神经网络三个方面分析建模解释,从而制定有效的攻击策略。这使得通过了解ML模型的底层工作机制来发起更有效的攻击。第二个重点是专注于开发防御策略,以提高ML模型对这些对抗性攻击的健壮性。所提出的防御策略针对典型知识发现管道中的三个主要步骤,包括训练数据精化、模型体系结构修改和测试数据过滤。虽然现有的工作是基于不断探测建立的系统并在发现预测错误后更新模型参数,但拟议的工作提供了一种主动解决问题的方法。第三个主旨是开发对抗性学习算法,以应对挑战并利用大数据带来的机遇。具体地说,开发的对抗性攻击和防御算法将处理大规模、异质和关系数据。这将使建议的算法能够扩展到展示具有挑战性的数据特征的真实世界应用程序。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Life after Speech Recognition: Fuzzing Semantic Misinterpretation for Voice Assistant Applications
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guofei Gu其他文献

Disrupting the SDN Control Channel via Shared Links: Attacks and Countermeasures
通过共享链路破坏SDN控制通道:攻击与对策
  • DOI:
    10.1109/tnet.2022.3169136
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Renjie Xie;Jiahao Cao;Qi Li;Kun Sun;Guofei Gu;Mingwei Xu;Yuan Yang
  • 通讯作者:
    Yuan Yang
Identify User-Input Privacy in Mobile Applications at Large Scale
大规模识别移动应用程序中的用户输入隐私
Rethinking Permission Enforcement Mechanism on Mobile Systems
重新思考移动系统的权限执行机制
NetHCF: Filtering Spoofed IP Traffic With Programmable Switches
NetHCF:使用可编程交换机过滤欺骗性 IP 流量

Guofei Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guofei Gu', 18)}}的其他基金

NSF Convergence Accelerator Track G: PETS: Programmable Zero-Trust Security for Operating Through 5G Infrastructure
NSF 融合加速器轨道 G:PETS:通过 5G 基础设施运行的可编程零信任安全
  • 批准号:
    2226339
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RINGS: NextSec: Zero-Trust, Programmable and Verifiable Security Transformation for NextG
RINGS:NextSec:NextG 的零信任、可编程和可验证安全转型
  • 批准号:
    2148374
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Community-Building Workshop on Programmable System Security in a Software-Defined World
软件定义世界中的可编程系统安全社区建设研讨会
  • 批准号:
    1841099
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: USBRCCR: Collaborative: Securing Networks in the Programmable Data Plane Era
EAGER:USBRCCR:协作:确保可编程数据平面时代的网络安全
  • 批准号:
    1740791
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SDI-CSCS: Collaborative Research: S2OS: Enabling Infrastructure-Wide Programmable Security with SDI
SDI-CSCS:协作研究:S2OS:通过 SDI 实现基础设施范围内的可编程安全性
  • 批准号:
    1700544
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: CICI: Secure and Resilient Architecture: S3D: A New SDN-Based Security Framework for the Science DMZ
合作研究:CICI:安全和弹性架构:S3D:用于科学 DMZ 的新的基于 SDN 的安全框架
  • 批准号:
    1642129
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NeTS: Small: Detecting Races in SDN Control Plane
NeTS:小型:检测 SDN 控制平面中的竞争
  • 批准号:
    1617985
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: HIMALAYAS: Hierarchical Machine Learning Stack for Fine-Grained Analysis of Malware Domain Groups
TWC:媒介:协作:HIMALAYAS:用于恶意软件域组细粒度分析的分层机器学习堆栈
  • 批准号:
    1314823
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Coordination- and Correlation-based Botnet Defense
职业:基于协调和关联的僵尸网络防御
  • 批准号:
    0954096
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
  • 批准号:
    2310470
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
  • 批准号:
    2321649
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了