SaTC: CORE: Small: Data-Driven Study of Attacks on Cyber-Physical Infrastructure Supporting Large Computing Systems

SaTC:核心:小型:支持大型计算系统的网络物理基础设施攻击的数据驱动研究

基本信息

项目摘要

This project addresses security attacks that: (i) masquerade as failures and (ii) are delivered via self-learning malware that monitors the target system and launches the attack at a time and system location to have a maximal impact, by injecting a strategic failure. The target systems are cyber-physical systems (CPS) that manage or control large computing enterprises (e.g., the cooling or power distribution of high-performance system or cloud infrastructure). In this scenario, the vulnerability of the cyber-physical system acts as a weak point that lowers the security barrier of an otherwise well-protected system. This project addresses a full range of issues, including: (i) design of self-learning malware; (ii) launch vectors for failure injection attacks; and (iii) mitigation and defense against such attacks. The research draws on data from a cyber-physical system that supports the cooling of the Blue Waters supercomputing system at the University of Illinois.The intellectual merit of this work lies in: (i) Development of scientifically sound methods to jointly study reliability failures of, and malicious attacks on, a cyber-physical system infrastructure that provides critical services for the uninterruptible operation of a large computing infrastructure. Possible advances in cyber-attacks in the context of indirectness, automation (driven by self-learning and adaptive malware), and reduced barriers to unauthorized entry to the system are considered; (ii) Study of feasibility of deploying attacks through self-learning malware (inserted into the auxiliary CPS), which takes advantage of a low-security barrier. In cyber-physical systems, the real-time control sequences rely on online measurements from the sensors distributed across the system. By monitoring those measurements one can build smart malware that is able to learn (interpret) the system state and then trigger an attack sequence at an opportune time; (iii) Develop attack mitigation methods that can be integrated with an existing intrusion detection system and combined with the monitoring from the cyber and physical layers of the tenant system; (iv) Validation of the mitigation strategies using a data-driven simulation testbed that emulates the cyber-physical system behavior and enables experimentation with different attack scenarios. While we focus on a large computing infrastructure, the problem has broader implications, e.g., the proliferation of "Internet of Things" devices creates an environment for attackers to exploit vulnerabilities in such entities as a stepping stone for launching attacks against highly-valuable assets. In the broader context of cyber security, this project aims to identify potential advances in threats by demonstrating the feasibility of masquerading a security problem as a reliability failure. Demonstrating a proof-of-concept on a potential threat and presenting an effective mitigation method will promote the development of detection and mitigation techniques against new threats.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了以下安全攻击:(i)伪装成故障,(ii)通过自学习恶意软件进行交付,该恶意软件监视目标系统并通过注入战略故障在某个时间和系统位置发起攻击以产生最大影响。目标系统是管理或控制大型计算企业(例如,高性能系统或云基础设施的冷却或配电)。在这种情况下,网络物理系统的脆弱性成为一个薄弱点,降低了原本受到良好保护的系统的安全屏障。该项目解决了一系列问题,包括:(i)自学习恶意软件的设计;(ii)故障注入攻击的启动向量;以及(iii)缓解和防御此类攻击。这项研究利用了一个网络物理系统的数据,该系统支持伊利诺伊大学Blue沃茨超级计算系统的冷却,这项工作的智力价值在于:㈠制定科学合理的方法,共同研究网络物理系统基础设施的可靠性故障和恶意攻击,该基础设施为大型计算基础设施的不间断运行提供关键服务。网络攻击的间接性,自动化(由自学和自适应恶意软件驱动)的背景下可能取得的进展,并减少未经授权进入系统的障碍被认为是;(ii)通过自学恶意软件(插入到辅助CPS),利用低安全屏障部署攻击的可行性研究。在信息物理系统中,实时控制序列依赖于分布在整个系统中的传感器的在线测量。通过监视这些测量值,可以构建能够学习的智能恶意软件(解释)系统状态,然后在适当的时候触发攻击序列;(iii)开发攻击缓解方法,该方法可以与现有的入侵检测系统集成,并与租户系统的网络和物理层的监控相结合; ㈣利用数据驱动的模拟试验台验证缓解战略,该试验台模拟网络物理系统的行为,并能够对不同的攻击情景进行试验。虽然我们关注的是大型计算基础设施,但该问题具有更广泛的含义,例如,“物联网”设备的激增为攻击者创造了一种环境,以利用这些实体中的漏洞作为对高价值资产发起攻击的垫脚石。在更广泛的网络安全背景下,该项目旨在通过展示将安全问题伪装成可靠性故障的可行性来识别威胁的潜在进展。展示潜在威胁的概念验证并提出有效的缓解方法将促进针对新威胁的检测和缓解技术的发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ML-driven Malware that Targets AV Safety
针对 AV 安全的 ML 驱动的恶意软件
Smart Malware using Leaked Control Data of Robotic Applications: The Case of Raven-II Surgical Robots.
使用泄露的机器人应用控制数据的智能恶意软件:Raven-II 手术机器人案例。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chung, K;Li, X.;Tang, P.;Zhu, Z.;Kalbarczyk, Z.;Iyer, R.;Kesavadas, T.
  • 通讯作者:
    Kesavadas, T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zbigniew Kalbarczyk其他文献

Zbigniew Kalbarczyk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zbigniew Kalbarczyk', 18)}}的其他基金

TC: Small: Data Driven Analysis of Security Attacks in Large Scale Systems
TC:小型:大规模系统中的数据驱动安全攻击分析
  • 批准号:
    1018503
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
  • 批准号:
    2310470
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
  • 批准号:
    2321649
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了