CSR: SMALL: Low-Latency Model Inference Using Cellular Batching
CSR:SMALL:使用蜂窝批处理的低延迟模型推理
基本信息
- 批准号:1816717
- 负责人:
- 金额:$ 41.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Successful cloud deployment of machine learning services, such as language translation, image search and home assistants require a high performance serving system that can process hundreds of thousands requests per second. It is particularly crucial for the serving system to ensure low latency, as even tens of milliseconds increase in delays can annoy users when using a service like the home assistant. Among the widely-used deep learning models, recurrent neural network (RNN) is an important class of models that incur high latency when processed by existing serving systems. This project aims to develop a new serving system that can handle a variety of Artificial Intelligence (AI) tasks using RNN-based deep learning models with significantly improved latency.To achieve good throughput on modern hardware, one must perform batched computation. This project develops a new, dynamic approach to batching, called Cellular Batching. Cellular Batching performs batching and execution at the granularity of a "cell" (aka a subgraph with embedded model weights) instead of the entire dataflow graph, as is done in existing systems. Under Cellular Batching, a new request can immediately join the execution of ongoing requests to minimize queuing delays and increase effective batching. The project will complete research tasks that make Cellular Batching practical (by developing an efficient scheduler and supporting zero-downtime model upgrading) and generalize it to different models such as search-guided RNNs.Deep learning models based on RNNs are becoming widely used to accomplish various AI tasks ranging from speech recognition and language translation, to question answering. As such, there is a pressing demand for a high-throughput and low-latency serving system, in order to improve end-user experience and reduce the cost of deployment. By demonstrating significant latency and throughput benefits, there is high potential for Cellular Batching to be widely adopted. This project will also develop a new course component on high performance machine learning systems as part of the graduate-level distributed systems course.This project will produce data in the form of source code, various serving benchmarks, and experimental results. The source code and all benchmarks used in the experiments will be distributed via Github. A local copy of the source code and the publications produced by the project will also be made available at the URL (http://batchmaker.news.cs.nyu.edu) for at least three years beyond the award period.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
成功的云部署机器学习服务,例如语言翻译,图像搜索和家庭助理需要高性能服务系统,该系统每秒可以处理数十万个请求。 对于服务系统来说,确保低潜伏期尤为重要,因为在使用家庭助理等服务时,即使延迟数十毫秒的延迟也可能会使用户烦恼。 在广泛使用的深度学习模型中,经常性的神经网络(RNN)是一类重要的模型,在现有服务系统处理时会产生高潜伏期。 该项目旨在开发一个新的服务系统,该系统可以使用基于RNN的深度学习模型来处理各种人工智能(AI)任务,具有显着改善的延迟。要实现现代硬件的良好吞吐量,必须执行批处理计算。 该项目开发了一种新的动态批处理方法,称为蜂窝批处理。 蜂窝批处理在“单元格”(又称具有嵌入式模型权重的子图)的粒度上执行批处理和执行,而不是整个数据流图,就像在现有系统中所做的那样。 在蜂窝批处理下,新请求可以立即加入执行正在进行的请求,以最大程度地减少排队延迟并增加有效的批处理。 该项目将完成使细胞批处理实用的研究任务(通过开发有效的调度程序并支持零downtime模型升级),并将其推广到不同模型,例如搜索引导的RNNS.Deep学习模型,基于RNNS的深度学习模型正被广泛用于完成从语音识别和语言转换的各种AI任务,以提出反应。 因此,为了提高最终用户体验并降低部署成本,对高通量和低延迟服务系统有紧迫的需求。 通过证明明显的延迟和吞吐量益处,可以广泛采用细胞批处理的潜力。 作为研究生级分布式系统课程的一部分,该项目还将在高性能机器学习系统上开发一个新的课程组件。该项目将以源代码,各种服务基准和实验结果的形式生成数据。 实验中使用的源代码和所有基准将通过GitHub分发。 A local copy of the source code and the publications produced by the project will also be made available at the URL (http://batchmaker.news.cs.nyu.edu) for at least three years beyond the award period.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supporting Very Large Models using Automatic Dataflow Graph Partitioning
- DOI:10.1145/3302424.3303953
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Minjie Wang;Chien-chin Huang;Jinyang Li
- 通讯作者:Minjie Wang;Chien-chin Huang;Jinyang Li
SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping
- DOI:10.1145/3373376.3378530
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Chien-chin Huang;Gu Jin;Jinyang Li
- 通讯作者:Chien-chin Huang;Gu Jin;Jinyang Li
Low latency RNN inference with cellular batching
- DOI:10.1145/3190508.3190541
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Pin Gao;Lingfan Yu;Yongwei Wu;Jinyang Li
- 通讯作者:Pin Gao;Lingfan Yu;Yongwei Wu;Jinyang Li
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs
- DOI:
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Minjie Wang;Lingfan Yu;Da Zheng;Quan Gan;Yujie Gai;Zihao Ye;Mufei Li;Jinjing Zhou;Qi Huang-
- 通讯作者:Minjie Wang;Lingfan Yu;Da Zheng;Quan Gan;Yujie Gai;Zihao Ye;Mufei Li;Jinjing Zhou;Qi Huang-
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinyang Li其他文献
Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels
通过刺激响应水凝胶的动态牺牲印刷进行分层图案化
- DOI:
10.1088/1758-5090/ab7e74 - 发表时间:
2020-03 - 期刊:
- 影响因子:9
- 作者:
Hongji Wen;Jinyang Li;Gregory F. Payne;Qi Feng;Minhua Liang;Jingxuan Chen;Hua Dong;Xiaodong Cao - 通讯作者:
Xiaodong Cao
The influence of NOS1AP gene polymorphisms and childhood abuse on antisocial personality disorder in Chinese male violent inmates
NOS1AP基因多态性和童年虐待对中国男性暴力囚犯反社会人格障碍的影响
- DOI:
10.1002/pmh.1572 - 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Jinyang Li;Lichen Ouyang;Xinyao Liu;Qiuyu Wang;Zhang Min;Gang Liu;Yuan Zhong;Ning Zhang;Chun Wang;Na Liu - 通讯作者:
Na Liu
Routing tradeoffs in dynamic peer-to-peer networks
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jinyang Li - 通讯作者:
Jinyang Li
A 65-nm ReRAM-Enabled Nonvolatile Processor With Time-Space Domain Adaption and Self-Write-Termination Achieving > 4x Faster Clock Frequency and > 6x Higher Restore Speed
具有时空域适应和自写终止功能的 65 nm ReRAM 非易失性处理器,可实现 > 4 倍更快的时钟频率和 > 6 倍更高的恢复速度
- DOI:
10.1109/jssc.2017.2724024 - 发表时间:
2017 - 期刊:
- 影响因子:5.4
- 作者:
Zhibo Wang;Yongpan Liu;Albert Lee;Fang Su;Chieh-Pu Lo;Zhe Yuan;Jinyang Li;Chien-Chen Lin;Wei-Hao Chen;Hsiao-Yun Chiu;Wei-En Lin;Ya-Chin King;Chrong-Jung Lin;Pedram Khalili Amiri;Kang-Lung Wang;Meng-Fan Chang;Huazhong Yang - 通讯作者:
Huazhong Yang
Stardust: A deep learning serving system in IoT: demo abstract
Stardust:物联网中的深度学习服务系统:演示摘要
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shuochao Yao;Tianshi Wang;Jinyang Li;T. Abdelzaher - 通讯作者:
T. Abdelzaher
Jinyang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinyang Li', 18)}}的其他基金
Collaborative Research: FMitF: Track I: Automatic Discovery and Verification of Database Query Transformations
合作研究:FMitF:第一轨:数据库查询转换的自动发现和验证
- 批准号:
2220407 - 财政年份:2022
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
CSR: Medium: Building next-generation cloud infrastructure using RDMA
CSR:中:使用 RDMA 构建下一代云基础设施
- 批准号:
1409942 - 财政年份:2014
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
CSR: Small: Practical Geo-Replicated Storage for Web Applications
CSR:小型:适用于 Web 应用程序的实用地理复制存储
- 批准号:
1218117 - 财政年份:2012
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Programming parallel in-memory data-center applications with Piccolo
CSR:媒介:协作研究:使用 Piccolo 对并行内存数据中心应用程序进行编程
- 批准号:
1065169 - 财政年份:2011
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
CAREER: Decentralizing Trust in Open Distributed Systems
职业:开放分布式系统中的去中心化信任
- 批准号:
0747052 - 财政年份:2008
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
CSR-PDOS: ISG: Collaborative Research: Building distributed, wide-area applications using WheelFS
CSR-PDOS:ISG:协作研究:使用 WheelFS 构建分布式广域应用程序
- 批准号:
0720644 - 财政年份:2007
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
相似国自然基金
IL-1R2低表达中性粒细胞亚群通过p38-铁死亡途径促进非小细胞肺癌进展的机制研究
- 批准号:82372855
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Plin2经脂质代谢途径调控小胶质细胞炎症反应在慢性低灌注脑白质损伤中的作用及机制研究
- 批准号:82301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低强度rTMS调控小胶质细胞Kv1.3钾通道抑制脑缺血早期神经元焦亡的研究
- 批准号:82302865
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IMRCs调控CPNE1-NLK-STAT3通路介导小胶质细胞极化改善慢性低灌注性血管性认知障碍的机制研究
- 批准号:82301450
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑小血管内皮功能障碍通过诱导斑块低切应力促进颅内动脉粥样硬化进展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CSR: Small: Evolution of Computer Vision for Low Power Devices, Breaking its Power Wall and Computational Complexity
CSR:小:低功耗设备计算机视觉的发展,打破其功耗墙和计算复杂性
- 批准号:
2146726 - 财政年份:2021
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research:Heterogeneous Ultra Low Power Accelerator for Wearable Biomedical Computing
CSR:小型:协作研究:用于可穿戴生物医学计算的异构超低功耗加速器
- 批准号:
2006274 - 财政年份:2019
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
CSR: Small: Reconfigurable In-Sensor Architectures for High Speed and Low Power In-situ Image Analysis
CSR:小型:可重构传感器内架构,用于高速、低功耗原位图像分析
- 批准号:
1946088 - 财政年份:2019
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
CSR: Small: Data on the Edge: Leveraging Edge Datacenters for Low-latency, Fault-tolerant, mobile Geo-replicated Transactional Data Stores
CSR:小型:边缘数据:利用边缘数据中心实现低延迟、容错、移动地理复制事务数据存储
- 批准号:
1815733 - 财政年份:2018
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
CSR: Small: Ultra-Low Power Analog Computing and Dry Skin-Electrode Contact Interface Design Techniques for Systems-On-A-Chip with EEG Sensing and Feature Extraction
CSR:小型:具有 EEG 传感和特征提取功能的片上系统的超低功耗模拟计算和干皮肤电极接触接口设计技术
- 批准号:
1812588 - 财政年份:2018
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant