CSR: Small: Reconfigurable In-Sensor Architectures for High Speed and Low Power In-situ Image Analysis
CSR:小型:可重构传感器内架构,用于高速、低功耗原位图像分析
基本信息
- 批准号:1946088
- 负责人:
- 金额:$ 27.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-14 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cameras are pervasively used for surveillance and monitoring applications and can capture a substantial amount of image data. The processing of this data, however, is either performed a posteriori or at powerful backend servers. While a posteriori and non-real-time video analysis may be sufficient for certain groups of applications, it does not suffice for applications such as autonomous navigation in complex environments, or hyper spectral image analysis using cameras on drones, that require near real-time video and image analysis, sometimes under SWAP (Size Weight and Power) constraints. This work hypothesizes that future data challenges in real-time imaging can be overcome by pushing computation into the image sensor. Such systems will exploit the massive parallel nature of sensor arrays to reduce the amount of data analyzed at the processing unit. To this end, vertically integrated technology, such as focal plane sensor processors (FPSP), have been developed to overcome the limitations of conventional image processing systems. While some of these devices are programmable and offer the benefits of close-to-sensor processing such as performance and bandwidth reduction, they exhibit many drawbacks. For instance, each column of pixels is handled by a single processor, which reduces the parallelism and all pixels are treated equally and processed at the same rate, despite differences in input relevance for the application at hand. Consequently, systems spend more time spinning on non-relevant data, which increases sensing and computation time and power consumption. Research on FPSPs has mostly focused on technology aspects with some proof of concepts. Architectural design approaches, that involve high-level synthesis with the goal of mapping applications to low-level architectures, have not gained a lot of attention.To overcome the limitations of existing architectures, the goal of this research is the design of a highly parallel, hierarchical, reconfigurable and vertically-integrated 3D sensing-computing architecture (XPU), along with high-level synthesis methods for real-time, low-power video analysis. The architecture is composed of hierarchical intertwined planes, each of which consists of computational units called XPUs. The lowest-level plane processes pixels in parallel to determine low level shapes in an image while higher-level planes use outputs from low-level planes to infer global features in the image. The proposed architecture presents three novel contributions: a hierarchical, configurable architecture for parallel feature extraction in video streams, a machine learning based relevance-feedback method that adapts computational performance and resource usage to input data relevance, and a framework for converting sequential image processing algorithms to multiple layers of parallel computational processing units in the sensor. The results of this projects can be used in other fields, where large amounts of processing need to be performed on data collected by generic sensors deployed in the field. Furthermore, mechanisms for translating sequential constructs into functionally equivalent accelerators using hardware constructs will lead to highly parallel and efficient sensing units that can perform domain specific tasks more efficiently.
摄像机广泛用于监视和监控应用,可以捕获大量的图像数据。然而,这些数据的处理要么在后验执行,要么在功能强大的后端服务器上执行。虽然后验和非实时视频分析对于某些应用来说可能已经足够了,但对于复杂环境中的自主导航或无人机上使用相机的高光谱图像分析等应用来说,它还不够,因为这些应用需要近实时的视频和图像分析,有时还受到SWAP(尺寸重量和功率)的限制。这项工作假设,通过将计算推进到图像传感器中,可以克服实时成像中未来的数据挑战。这种系统将利用传感器阵列的大规模并行特性来减少处理单元分析的数据量。为此,垂直集成技术,如焦平面传感器处理器(FPSP),已经发展克服传统的图像处理系统的局限性。虽然这些设备中的一些是可编程的,并提供近距离传感器处理的好处,如性能和带宽减少,但它们显示出许多缺点。例如,每个像素列都由单个处理器处理,这减少了并行性,所有像素都被平等对待并以相同的速率处理,尽管当前应用程序的输入相关性存在差异。因此,系统花更多的时间在不相关的数据上,这增加了感知和计算时间和功耗。对fpsp的研究主要集中在技术方面,有一些概念的证明。体系结构设计方法涉及到将应用程序映射到低层体系结构的高级综合,但没有得到很多关注。为了克服现有架构的局限性,本研究的目标是设计一个高度并行、分层、可重构和垂直集成的3D传感计算架构(XPU),以及用于实时、低功耗视频分析的高级合成方法。该体系结构由分层交织的平面组成,每个平面由称为xpu的计算单元组成。底层平面并行处理像素以确定图像中的底层形状,而高层平面使用底层平面的输出来推断图像中的全局特征。提出的架构提出了三个新的贡献:用于视频流并行特征提取的分层可配置架构,基于机器学习的关联反馈方法,该方法适应计算性能和资源使用以输入数据相关性,以及将顺序图像处理算法转换为传感器中多层并行计算处理单元的框架。这些项目的成果可用于其他领域,在这些领域,需要对部署在现场的通用传感器收集的数据进行大量处理。此外,将顺序结构转换为使用硬件结构的功能等效加速器的机制将导致高度并行和高效的传感单元,可以更有效地执行特定领域的任务。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance Exploration on Pre-implemented CNN Hardware Accelerator on FPGA
FPGA 上预实现 CNN 硬件加速器的性能探索
- DOI:10.1109/icfpt51103.2020.00055
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kwadjo, Danielle Tchuinkou;Mbongue, Joel Mandebi;Bobda, Christophe
- 通讯作者:Bobda, Christophe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christophe Bobda其他文献
Application of ASP for Automatic Synthesis of Flexible Multiprocessor Systems from Parallel Programs
ASP在并行程序自动综合灵活多处理器系统中的应用
- DOI:
10.1007/978-3-642-04238-6_64 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Harold Ishebabi;Philipp Mahr;Christophe Bobda;Martin Gebser;Torsten Schaub - 通讯作者:
Torsten Schaub
Heuristics for Flexible CMP Synthesis
灵活 CMP 合成的启发式方法
- DOI:
10.1109/tc.2010.77 - 发表时间:
2010 - 期刊:
- 影响因子:3.7
- 作者:
Harold Ishebabi;Christophe Bobda - 通讯作者:
Christophe Bobda
On-chip transactional memory system for FPGAs using TCC model
使用 TCC 模型的 FPGA 片上事务存储系统
- DOI:
10.1145/1667520.1667525 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Philipp Mahr;Alexander Heine;Christophe Bobda - 通讯作者:
Christophe Bobda
Hierarchical Design of a Secure Image Sensor with Dynamic Reconfiguration
- DOI:
10.1007/s11265-020-01564-9 - 发表时间:
2020-06-12 - 期刊:
- 影响因子:1.800
- 作者:
Pankaj Bhowmik;Md Jubaer Hossain Pantho;Christophe Bobda - 通讯作者:
Christophe Bobda
Christophe Bobda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christophe Bobda', 18)}}的其他基金
Travel: NSF Student Travel Grant for The 32nd IEEE International Symposium On Field-Programmable Custom Computing Machines (FCCM 2024)
旅行:第 32 届 IEEE 国际现场可编程定制计算机研讨会 (FCCM 2024) 的 NSF 学生旅行补助金
- 批准号:
2411045 - 财政年份:2024
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning
协作研究:SHF:媒介:协作机器学习的异构架构
- 批准号:
2106610 - 财政年份:2021
- 资助金额:
$ 27.38万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for 2020 IEEE International Symposium On Field-Programmable Custom Computing Machines (FCCM 2020)
NSF 学生旅费资助 2020 年 IEEE 国际现场可编程定制计算机研讨会 (FCCM 2020)
- 批准号:
2016161 - 财政年份:2020
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
CNS Core: Small: A Hardware/Software Infrastructure for Secured Multi-Tenancy in FPGA-Accelerated Cloud and Datacenters
CNS 核心:小型:用于 FPGA 加速云和数据中心中安全多租户的硬件/软件基础设施
- 批准号:
2007320 - 财政年份:2020
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Decentralized Edge Computing Platform for Privacy-Preserving Mobile Crowdsensing
合作研究:SHF:小型:用于保护隐私的移动群体感知的去中心化边缘计算平台
- 批准号:
2007210 - 财政年份:2020
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
CSR: Small: Reconfigurable In-Sensor Architectures for High Speed and Low Power In-situ Image Analysis
CSR:小型:可重构传感器内架构,用于高速、低功耗原位图像分析
- 批准号:
1618606 - 财政年份:2016
- 资助金额:
$ 27.38万 - 项目类别:
Continuing Grant
EAGER: GOALI: Distributed Embedded Vision System for Multi-Unmanned Ground Vehicle Coordination in Indoor Environments
EAGER:GOALI:用于室内环境中多无人地面车辆协调的分布式嵌入式视觉系统
- 批准号:
1547934 - 财政年份:2015
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
US-Cameroon Planing Research Visit on Combined Binary Code Translation and Synthesis for Heterogeneous Multiprocessor Systems, January 2014
美国-喀麦隆计划对异构多处理器系统的组合二进制代码翻译和合成进行研究访问,2014 年 1 月
- 批准号:
1346542 - 财政年份:2013
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Self-Coordination in Cooperative Smart Camera Networks Incorporating System-On-Chip Reconfiguration
CSR:媒介:协作研究:结合片上系统重新配置的协作智能相机网络中的自协调
- 批准号:
1302596 - 财政年份:2013
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SaTC: CORE: Small: Security of FPGA-as-a-Service Reconfigurable Systems
SaTC:核心:小型:FPGA 即服务可重构系统的安全性
- 批准号:
2310142 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: NV-RGRA: Non-Volatile Nano-Second Right-Grained Reconfigurable Architecture for Data-Intensive Machine Learning and Graph Computing
合作研究:CNS 核心:小型:NV-RGRA:用于数据密集型机器学习和图计算的非易失性纳秒右粒度可重构架构
- 批准号:
2228239 - 财政年份:2022
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
CNS Core: Small: Reconfigurable Intrabody Network for Therapeutics (RIBNeT)
CNS 核心:小型:用于治疗的可重构体内网络 (RIBNeT)
- 批准号:
2245088 - 财政年份:2022
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2245129 - 财政年份:2022
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: NV-RGRA: Non-Volatile Nano-Second Right-Grained Reconfigurable Architecture for Data-Intensive Machine Learning and Graph Computing
合作研究:CNS 核心:小型:NV-RGRA:用于数据密集型机器学习和图计算的非易失性纳秒右粒度可重构架构
- 批准号:
2228240 - 财政年份:2022
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
CNS Core: Small: Reconfigurable Intrabody Network for Therapeutics (RIBNeT)
CNS 核心:小型:用于治疗的可重构体内网络 (RIBNeT)
- 批准号:
2129659 - 财政年份:2021
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2124525 - 财政年份:2021
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Enabling Seamless Coexistence between Passive and Active Networks using Reconfigurable Reflecting Surfaces
合作研究:SWIFT:SMALL:使用可重构反射表面实现无源和有源网络之间的无缝共存
- 批准号:
2030068 - 财政年份:2020
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Security of FPGA-as-a-Service Reconfigurable Systems
SaTC:核心:小型:FPGA 即服务可重构系统的安全性
- 批准号:
2011561 - 财政年份:2020
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Enabling Seamless Coexistence between Passive and Active Networks using Reconfigurable Reflecting Surfaces
合作研究:SWIFT:SMALL:使用可重构反射表面实现无源和有源网络之间的无缝共存
- 批准号:
2030215 - 财政年份:2020
- 资助金额:
$ 27.38万 - 项目类别:
Standard Grant