Collaborative Research: Next generation physiology: a systems-level understanding of microbes driving carbon cycling in marine sediments

合作研究:下一代生理学:对驱动海洋沉积物碳循环的微生物的系统级理解

基本信息

  • 批准号:
    1817354
  • 负责人:
  • 金额:
    $ 37.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

It is currently impossible to grow the vast majority (99%) of deep-sea microbes under laboratory conditions. Because of this recalcitrancy of most microbes to cultivation, linking specific genotypes with their in situ phenotypes has been a problem in microbiology for decades - it has been very difficult to figure out which members of microbial communities are doing what, due to the complexity of these communities. The new techniques used in these studies allow for a relatively straightforward labeling of the microbial cells that are active under different conditions, allowing for these "next generation physiology" techniques to be used to identify the individual cells actively consuming different compounds. In this technique metabolically active cells are labeled with aa compounds with the detection of these cells by fluorescence staining. This allows for the metabolism of hundreds of taxa to be followed under dozens of different conditions in parallel. These studies will focus on the hydrothermally active sediments of Guaymas Basin in the Gulf of California. There, a broad range of phylum-level lineages of uncultured archaea and bacteria are hypothesized to engage in the degradation of complex organic molecules, including hydrocarbons. The microbes that assimilate and break down these molecules will be identified, and their metabolism will be correlated with their genomes, allowing for an understanding of how these microbes are able to live on a diet of hydrocarbons, and helping us to further understand how these compounds break down in the environment. The investigators make use of topical blogs, public talks and magazine articles to educate and inform the general public on the importance of microbes in creating the world around us, and their laboratories will provide undergraduate researchers with exciting research opportunities. The aim of this project is to investigate physiological controls of microbial carbon cycling in marine sediments and to link specific genotypes with their in situ phenotype. The investigators recently developed a new, highly parallelizable, and adaptable approach that allows for the studying microbial function and metabolic interactions in uncultured microbes at unrivaled throughput. To achieve this goal they combine the (1) labeling of translationally active cells via bioorthogonal non-canonical amino acid tagging (BONCAT), (2) sorting of individual, active cells by fluorescence activated cell sorting, and (3) study of the identity and genetic makeup of active cells by massive parallel gene sequencing. This results in a readout of the translational activity of hundreds of uncultured taxa in parallel, which allows for the functional activity of hundreds of taxa under dozens of different conditions to be determined. Guaymas Basin sediments were chosen for these studies due to their steep gradients in temperature, variety of electron donor identity and availability, and the presence of hydrocarbon seeps supplying aliphatic and aromatic hydrocarbons to the system. This means that these sediments are likely to have highly diverse metabolic potential, and their study will allow for a deeper understanding of carbon-cycling and other geochemical processes in marine sediments. The researchers will identify those microbes in environmental samples that are involved in hydrocarbon, complex substrate and heterotrophic/autotrophic activity, and follow this with targeted whole genome shotgun sequencing to directly identify the microbes actively utilizing those lifestyles, and provide the genetic makeup of cells that are able to exploit specific substrates. This work will provide a benchmark study for the developing field of deep-sea sediment microbiology and lay the foundation for future physiological studies in environmental microbiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,在实验室条件下培养绝大多数(99%)的深海微生物是不可能的。由于大多数微生物对培养的这种抵抗性,将特定基因型与其原位表型联系起来一直是微生物学几十年来的一个问题——由于这些群落的复杂性,很难弄清楚微生物群落的哪些成员在做什么。这些研究中使用的新技术可以相对直接地标记在不同条件下活跃的微生物细胞,从而允许使用这些“下一代生理学”技术来识别活跃消耗不同化合物的单个细胞。在这种技术中,代谢活跃的细胞用aa化合物标记,并用荧光染色检测这些细胞。这使得数百个分类群的新陈代谢可以在几十种不同的条件下并行进行。这些研究将集中在加利福尼亚湾瓜伊马斯盆地的热液活动沉积物上。在那里,未经培养的古生菌和细菌的广泛门级谱系被假设参与复杂有机分子的降解,包括碳氢化合物。吸收和分解这些分子的微生物将被识别出来,它们的新陈代谢将与它们的基因组相关联,从而了解这些微生物如何能够以碳氢化合物为食,并帮助我们进一步了解这些化合物是如何在环境中分解的。研究人员利用专题博客、公开演讲和杂志文章来教育和告知公众微生物在创造我们周围世界中的重要性,他们的实验室将为本科生研究人员提供令人兴奋的研究机会。该项目的目的是研究海洋沉积物中微生物碳循环的生理控制,并将特定基因型与其原位表型联系起来。研究人员最近开发了一种新的、高度并行的、适应性强的方法,可以以无与伦比的通量研究未培养微生物的微生物功能和代谢相互作用。为了实现这一目标,他们结合了(1)通过生物正交非规范氨基酸标记(BONCAT)标记翻译活性细胞,(2)通过荧光激活细胞分选对个体活性细胞进行分选,以及(3)通过大量平行基因测序研究活性细胞的身份和基因组成。这样就可以同时读出数百个未培养分类群的翻译活性,从而可以确定数百个分类群在数十种不同条件下的功能活性。选择瓜伊马斯盆地沉积物进行研究是因为其温度梯度大,电子供体身份和可用性多样,并且存在为体系提供脂肪烃和芳烃的烃渗漏。这意味着这些沉积物可能具有高度多样化的代谢潜力,他们的研究将使人们对海洋沉积物中的碳循环和其他地球化学过程有更深入的了解。研究人员将在环境样本中识别那些涉及碳氢化合物、复杂底物和异养/自养活动的微生物,并利用目标全基因组散弹枪测序来直接识别积极利用这些生活方式的微生物,并提供能够利用特定底物的细胞的基因组成。本研究将为深海沉积物微生物学领域的发展提供标杆性研究,并为今后环境微生物学的生理研究奠定基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correction to: Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups
更正:Deltaproteobacteria 的大规模蛋白质水平比较揭示了内聚的代谢群体
  • DOI:
    10.1038/s41396-021-01091-w
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Langwig, Marguerite V.;De Anda, Valerie;Dombrowski, Nina;Seitz, Kiley W.;Rambo, Ian M.;Greening, Chris;Teske, Andreas P.;Baker, Brett J.
  • 通讯作者:
    Baker, Brett J.
Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups
  • DOI:
    10.1038/s41396-021-01057-y
  • 发表时间:
    2021-07-30
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Langwig, Marguerite V.;De Anda, Valerie;Baker, Brett J.
  • 通讯作者:
    Baker, Brett J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett Baker其他文献

[(H2O)Zn(Imidazole)n]2+: the vital roles of coordination number and geometry in Zn-OH2 acidity and catalytic hydrolysis.
[(H2O)Zn(咪唑)n]2 :配位数和几何形状在 Zn-OH2 酸性和催化水解中的重要作用。
Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota
  • DOI:
    https://doi.org/10.1038/s41396-018-0060-x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Yang Liu;Zhichao Zhou;Jie Pan;Brett Baker;Ji-Dong Gu;Meng Li
  • 通讯作者:
    Meng Li

Brett Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett Baker', 18)}}的其他基金

Resolving the ecological biodiversity of Asgard archaea and their role in the evolution of eukaryotes
解析阿斯加德古菌的生态多样性及其在真核生物进化中的作用
  • 批准号:
    1753661
  • 财政年份:
    2018
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325310
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
  • 批准号:
    2230609
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
  • 批准号:
    2308306
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了