High-Order Numerical Methods for Convection-Diffusion Equations with Unbounded Singularities
具有无界奇点的对流扩散方程的高阶数值方法
基本信息
- 批准号:1818467
- 负责人:
- 金额:$ 23.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on design of efficient and robust numerical methods to solve partial differential equations with unbounded singularities, with potential applications in astrophysics, biology, combustion, electrical engineering, and oil recovery. The numerical techniques under development can be extended to systems with multi-species fluid mixtures such as gaseous detonation and reacting flows. The project includes training of graduate students through involvement in the research. Research results will be integrated into new courses on numerical analysis and multidisciplinary computation.The focus of this project is the study of high-order numerical methods for solving convection-diffusion equations with unbounded singularities. It contains two parts. The first part is to study the error behaviors of the numerical schemes and ensure the boundedness of numerical approximations before blow-up occurs (where the exact solutions are sufficiently smooth). The second part is to use high-order numerical methods to solve convection-diffusion equations involving delta-singularities and other blow-up solutions. Special bound-preserving techniques will be constructed to ensure that the numerical approximations are physically relevant. The strategies in this work do not depend on the maximum principle, and they ensure L1-stability of the numerical schemes. For problems with blow-up solutions, the blow-up criteria, blow-up locations, blow-up time, and blow-up rates will be studied. The project aims to develop a general approach to numerically approximate exact blow-up times and to elucidate the relationship between blow-up time and significant system parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目着重于设计有效且稳健的数值方法,以求解具有无限奇异性的部分微分方程,并在天体物理学,生物学,燃烧,电气工程和石油回收中使用潜在的应用。正在开发的数值技术可以扩展到具有多物种流体混合物(例如气体爆炸和反应流量)的系统。该项目包括通过参与研究来培训研究生。研究结果将纳入有关数值分析和多学科计算的新课程中。该项目的重点是研究以无限奇异性解决对流扩散方程的高级数值方法。它包含两个部分。第一部分是研究数值方案的误差行为,并确保发生爆破之前的数值近似值(在此,确切的解决方案足够光滑)。第二部分是使用高阶数值方法来求解涉及三角线和其他爆炸解决方案的对流扩散方程。将构建特殊的界限技术,以确保数值近似与物理相关。这项工作的策略不取决于最大原则,并且可以确保数值方案的L1稳定性。对于爆炸解决方案的问题,将研究爆炸标准,爆炸位置,爆破时间和爆炸率。该项目旨在开发一种一般方法来在数值上近似确切的爆炸时间,并阐明爆炸时间和重要的系统参数之间的关系。该奖项反映了NSF的法定任务,并通过基金会的智力优点和更广泛的影响审查标准,认为通过评估值得支持。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Order Bound-Preserving Finite Difference Methods for Incompressible Wormhole Propagation
- DOI:10.1007/s10915-021-01619-4
- 发表时间:2021-08
- 期刊:
- 影响因子:2.5
- 作者:Xinyuan Liu;Yang Yang-Yang;Hui Guo
- 通讯作者:Xinyuan Liu;Yang Yang-Yang;Hui Guo
High-order local discontinuous Galerkin method for simulating wormhole propagation
- DOI:10.1016/j.cam.2018.10.021
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Lulu Tian;Ziyao Xu;Yang Yang-Yang;Ning Qi
- 通讯作者:Hui Guo;Lulu Tian;Ziyao Xu;Yang Yang-Yang;Ning Qi
Bound-preserving discontinuous Galerkin methods with second-order implicit pressure explicit concentration time marching for compressible miscible displacements in porous media
- DOI:10.1016/j.jcp.2022.111240
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Wenjing Feng;Hui Guo;Yue Kang;Yang Yang-Yang
- 通讯作者:Wenjing Feng;Hui Guo;Yue Kang;Yang Yang-Yang
Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension
- DOI:10.1090/mcom/3527
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Yang Yang-Yang;Xiaofeng Cai;Jing-Mei Qiu
- 通讯作者:Yang Yang-Yang;Xiaofeng Cai;Jing-Mei Qiu
High-order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes
- DOI:10.1016/j.jcp.2019.03.046
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Ziyao Xu;Yang Yang-Yang;Hui Guo
- 通讯作者:Ziyao Xu;Yang Yang-Yang;Hui Guo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Yang其他文献
Structure of the rhesus monkey TRIM5alpha PRYSPRY domain
恒河猴 TRIM5alpha PRYSPRY 结构域的结构
- DOI:
10.2210/pdb2lm3/pdb - 发表时间:
2012 - 期刊:
- 影响因子:4.8
- 作者:
N. Biris;Yang Yang;Alexander B. Taylor;A. Tomashevski;M. Guo;P. Hart;F. Diaz;D. Ivanov - 通讯作者:
D. Ivanov
Mycobacterial PPE13 activates inflammasome by interacting with the NATCH and LRR domains of NLRP3
分枝杆菌 PPE13 通过与 NLRP3 的 NATCH 和 LRR 结构域相互作用激活炎症小体
- DOI:
10.1096/fj.202000200rr - 发表时间:
2020-08 - 期刊:
- 影响因子:0
- 作者:
Yang Yang;Xu Pianpian;He Ping;Shi Fushan;Tang Yiran;Guan Chiyu;Zeng Huan;Zhou Yingshan;Song Quanjiang;Zhou Bin;Jiang Sheng;Shao Chunyan;Sun Jing;Yang Yongchun;Wang Xiaodu;Song Houhui - 通讯作者:
Song Houhui
A Data-Driven and Optimal Bus Scheduling Model With Time-Dependent Traffic and Demand
具有时间依赖性交通和需求的数据驱动的最优公交调度模型
- DOI:
10.1109/tits.2016.2644725 - 发表时间:
2017-01 - 期刊:
- 影响因子:8.5
- 作者:
Wang Yuan;Zhang Dongxiang;Hu Lu;Yang Yang;Lee Loo Hay - 通讯作者:
Lee Loo Hay
BODIPY-based sulfoxide: Synthesis, photophysical characterization and response to benzenethiols
基于 BODIPY 的亚砜:合成、光物理表征以及对苯硫醇的响应
- DOI:
10.1016/j.dyepig.2012.08.026 - 发表时间:
2013-02 - 期刊:
- 影响因子:4.5
- 作者:
Chunchang Zhao;Xuzhe Wang;Jian Cao;Peng Feng;Jinxin Zhang;Yanfen Zhang;Yang Yang;Zhenjun Yang - 通讯作者:
Zhenjun Yang
Architectural Exploration to Address the Reliability Challenges for ReRAM-Based Buffer in SSD
解决 SSD 中基于 ReRAM 的缓冲区可靠性挑战的架构探索
- DOI:
10.1109/tcsi.2018.2851141 - 发表时间:
2019 - 期刊:
- 影响因子:5.1
- 作者:
Zhao Xiaoqing;Sun Hongbin;Liu Longjun;Yang Yang;Dai Liangliang;Wu Xiulong;Zhang Ruizhi;Wang Jianxiao;Zheng Nanning - 通讯作者:
Zheng Nanning
Yang Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Yang', 18)}}的其他基金
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
- 批准号:
2220373 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
CAREER: Synergistic Inverse Wave Analysis and Computation
职业:协同逆波分析和计算
- 批准号:
2237534 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Piezoelectric Mechanocatalytic Destruction of PFAS in Solid Matrices at Ambient Conditions: An Integrated Research and Education Plan
职业:环境条件下固体基质中 PFAS 的压电机械催化破坏:综合研究和教育计划
- 批准号:
2237080 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
- 批准号:
2145455 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Engineered SAM-Dependent Enzymes for Stereoselective Alkylation Reactions
职业:用于立体选择性烷基化反应的工程 SAM 依赖性酶
- 批准号:
2145749 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
CAREER: Development of Constrained Multicomponent Density Functional Theory and Accurate and Efficient Incorporation of Nuclear Quantum Effects in ab initio Molecular Dynamics
职业:约束多组分密度泛函理论的发展以及从头算分子动力学中准确有效地结合核量子效应
- 批准号:
2238473 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices
ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS
- 批准号:
2120452 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Collaborative Research: A New Rational Design of Functionally Graded Materials for Durable Lithium-Ion Batteries
合作研究:耐用锂离子电池功能梯度材料的新合理设计
- 批准号:
1949840 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
- 批准号:
2006881 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
相似国自然基金
双区域自然对流耦合模型的高效数值方法研究
- 批准号:12361077
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
- 批准号:42376190
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
水平井控水完井多重耦合精细数值模拟与优化设计方法
- 批准号:52374055
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
钻爆法海底隧道上覆岩体灾变机理与演化过程数值模拟方法研究
- 批准号:52309135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
- 批准号:12301469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual