High-Order Numerical Methods for Convection-Diffusion Equations with Unbounded Singularities
具有无界奇点的对流扩散方程的高阶数值方法
基本信息
- 批准号:1818467
- 负责人:
- 金额:$ 23.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on design of efficient and robust numerical methods to solve partial differential equations with unbounded singularities, with potential applications in astrophysics, biology, combustion, electrical engineering, and oil recovery. The numerical techniques under development can be extended to systems with multi-species fluid mixtures such as gaseous detonation and reacting flows. The project includes training of graduate students through involvement in the research. Research results will be integrated into new courses on numerical analysis and multidisciplinary computation.The focus of this project is the study of high-order numerical methods for solving convection-diffusion equations with unbounded singularities. It contains two parts. The first part is to study the error behaviors of the numerical schemes and ensure the boundedness of numerical approximations before blow-up occurs (where the exact solutions are sufficiently smooth). The second part is to use high-order numerical methods to solve convection-diffusion equations involving delta-singularities and other blow-up solutions. Special bound-preserving techniques will be constructed to ensure that the numerical approximations are physically relevant. The strategies in this work do not depend on the maximum principle, and they ensure L1-stability of the numerical schemes. For problems with blow-up solutions, the blow-up criteria, blow-up locations, blow-up time, and blow-up rates will be studied. The project aims to develop a general approach to numerically approximate exact blow-up times and to elucidate the relationship between blow-up time and significant system parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目致力于设计有效且稳健的数值方法来求解具有无界奇点的偏微分方程,在天体物理学、生物学、燃烧、电气工程和石油开采等领域具有潜在的应用前景。正在开发的数值技术可以扩展到具有多种流体混合物的系统,如气体爆轰和反应流。该项目包括通过参与研究来培训研究生。研究成果将整合到数值分析和多学科计算的新课程中。本课题的重点是研究求解具有无界奇点的对流扩散方程的高阶数值方法。它包含两个部分。第一部分是研究数值格式的误差行为,并保证数值逼近在爆破发生前(精确解足够光滑时)的有界性。第二部分是用高阶数值方法求解包含δ奇点的对流扩散方程和其他爆破解。将构造特殊的保界技术,以确保数值近似是物理相关的。本工作中的策略不依赖于极大值原理,它们保证了数值格式的l1稳定性。对于有爆破解的问题,将研究爆破标准、爆破地点、爆破时间和爆破率。该项目旨在开发一种通用的方法来数值近似精确的爆破时间,并阐明爆破时间与重要系统参数之间的关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Order Bound-Preserving Finite Difference Methods for Incompressible Wormhole Propagation
- DOI:10.1007/s10915-021-01619-4
- 发表时间:2021-08
- 期刊:
- 影响因子:2.5
- 作者:Xinyuan Liu;Yang Yang-Yang;Hui Guo
- 通讯作者:Xinyuan Liu;Yang Yang-Yang;Hui Guo
High-order local discontinuous Galerkin method for simulating wormhole propagation
- DOI:10.1016/j.cam.2018.10.021
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Lulu Tian;Ziyao Xu;Yang Yang-Yang;Ning Qi
- 通讯作者:Hui Guo;Lulu Tian;Ziyao Xu;Yang Yang-Yang;Ning Qi
Bound-preserving discontinuous Galerkin methods with second-order implicit pressure explicit concentration time marching for compressible miscible displacements in porous media
- DOI:10.1016/j.jcp.2022.111240
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Wenjing Feng;Hui Guo;Yue Kang;Yang Yang-Yang
- 通讯作者:Wenjing Feng;Hui Guo;Yue Kang;Yang Yang-Yang
Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation
- DOI:10.1051/m2an/2021020
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Rui-yu Jia;Lulu Tian;Yang Yang-Yang
- 通讯作者:Hui Guo;Rui-yu Jia;Lulu Tian;Yang Yang-Yang
High-order bound-preserving finite difference methods for multispecies and multireaction detonations
多物种和多反应爆炸的高阶保界有限差分法
- DOI:10.1007/s42967-020-00117-y
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Jie Du;Yang Yang
- 通讯作者:Yang Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Yang其他文献
Dynamic Response Analysis of the Coal Gangue-like Elastic Rock Sphere Impact on the Massless Tail Beam Based on Contact-Structure Theory and FEM
基于接触结构理论和有限元的煤矸石类弹性岩球撞击无质量尾梁动力响应分析
- DOI:
10.1155/2019/6030542 - 发表时间:
2019-10 - 期刊:
- 影响因子:1.6
- 作者:
Yang Yang;Lirong Wan;Zhengyuan Xin - 通讯作者:
Zhengyuan Xin
In situ synthesis of visible-light-driven Z-scheme AgI/Bi2WO6 heterojunction photocatalysts with enhanced photocatalytic activity
原位合成可见光驱动的Z型AgI/Bi2WO6异质结光催化剂,具有增强的光催化活性
- DOI:
10.1016/j.ceramint.2018.12.119 - 发表时间:
2019-04 - 期刊:
- 影响因子:5.2
- 作者:
Wenjing Xue;Zhiwei Peng;Danlian Huang(黄丹莲;通讯作者);Guangming Zeng;Cheng-Gang Niu;Rui Deng;Yang Yang;Xuelei Yan - 通讯作者:
Xuelei Yan
Effects of formulation parameters on encapsulation efficiency and release behavior of thienorphine loaded PLGA microspheres
处方参数对噻吩诺啡PLGA微球包封率和释放行为的影响
- DOI:
10.3109/10837450.2011.618948 - 发表时间:
2013 - 期刊:
- 影响因子:3.4
- 作者:
Yang Yang;Yongliang Gao;X. Mei - 通讯作者:
X. Mei
Comparative proteomics and correlated signaling network of kidney in ApoE deficient mouse
ApoE 缺陷小鼠肾脏的比较蛋白质组学和相关信号网络
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
X. Lv;Jianzhong Ai;Mi Li;Honglian Wang;Tielin Chen;Yin Fang;Yunhong Liu;Puhui Zhou;Mianzhi Chen;Ruizhi Tan;Yuhang Liu;Yang Yang;Qin Zhou - 通讯作者:
Qin Zhou
A Study on Camera Work Extraction Technology from Compressed Image Information.
压缩图像信息中相机作品提取技术的研究。
- DOI:
10.3169/itej.53.1439 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Yang Yang;S. Nakano - 通讯作者:
S. Nakano
Yang Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Yang', 18)}}的其他基金
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
- 批准号:
2220373 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
CAREER: Synergistic Inverse Wave Analysis and Computation
职业:协同逆波分析和计算
- 批准号:
2237534 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Piezoelectric Mechanocatalytic Destruction of PFAS in Solid Matrices at Ambient Conditions: An Integrated Research and Education Plan
职业:环境条件下固体基质中 PFAS 的压电机械催化破坏:综合研究和教育计划
- 批准号:
2237080 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
- 批准号:
2145455 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Engineered SAM-Dependent Enzymes for Stereoselective Alkylation Reactions
职业:用于立体选择性烷基化反应的工程 SAM 依赖性酶
- 批准号:
2145749 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
CAREER: Development of Constrained Multicomponent Density Functional Theory and Accurate and Efficient Incorporation of Nuclear Quantum Effects in ab initio Molecular Dynamics
职业:约束多组分密度泛函理论的发展以及从头算分子动力学中准确有效地结合核量子效应
- 批准号:
2238473 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices
ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS
- 批准号:
2120452 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Collaborative Research: A New Rational Design of Functionally Graded Materials for Durable Lithium-Ion Batteries
合作研究:耐用锂离子电池功能梯度材料的新合理设计
- 批准号:
1949840 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
- 批准号:
2006881 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
相似海外基金
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110774 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110768 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




