High-Order Numerical Methods for Convection-Diffusion Equations with Unbounded Singularities
具有无界奇点的对流扩散方程的高阶数值方法
基本信息
- 批准号:1818467
- 负责人:
- 金额:$ 23.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on design of efficient and robust numerical methods to solve partial differential equations with unbounded singularities, with potential applications in astrophysics, biology, combustion, electrical engineering, and oil recovery. The numerical techniques under development can be extended to systems with multi-species fluid mixtures such as gaseous detonation and reacting flows. The project includes training of graduate students through involvement in the research. Research results will be integrated into new courses on numerical analysis and multidisciplinary computation.The focus of this project is the study of high-order numerical methods for solving convection-diffusion equations with unbounded singularities. It contains two parts. The first part is to study the error behaviors of the numerical schemes and ensure the boundedness of numerical approximations before blow-up occurs (where the exact solutions are sufficiently smooth). The second part is to use high-order numerical methods to solve convection-diffusion equations involving delta-singularities and other blow-up solutions. Special bound-preserving techniques will be constructed to ensure that the numerical approximations are physically relevant. The strategies in this work do not depend on the maximum principle, and they ensure L1-stability of the numerical schemes. For problems with blow-up solutions, the blow-up criteria, blow-up locations, blow-up time, and blow-up rates will be studied. The project aims to develop a general approach to numerically approximate exact blow-up times and to elucidate the relationship between blow-up time and significant system parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是设计有效和强大的数值方法来解决具有无界奇点的偏微分方程,在天体物理学,生物学,燃烧,电气工程和石油开采中具有潜在的应用。发展中的数值技术可以扩展到多组分流体混合物系统,如气体爆炸和反应流。该项目包括通过参与研究对研究生进行培训。研究成果将融入数值分析和多学科计算的新课程中,本项目的重点是研究求解具有无界奇异性的对流扩散方程的高阶数值方法。它包括两个部分。第一部分是研究数值格式的误差行为,并确保在爆破发生之前数值逼近的有界性(其中精确解是足够光滑的)。第二部分是用高阶数值方法求解含δ-奇点的对流扩散方程和其它爆破解。特殊的边界保持技术将被构造,以确保数值近似是物理相关的。在这项工作中的策略不依赖于最大值原理,他们确保数值格式的L1稳定性。对于具有爆破解的问题,将研究爆破准则、爆破位置、爆破时间和爆破速率。该项目旨在开发一种通用的方法,以数值近似准确的爆破时间,并阐明爆破时间和重要的系统参数之间的关系。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Order Bound-Preserving Finite Difference Methods for Incompressible Wormhole Propagation
- DOI:10.1007/s10915-021-01619-4
- 发表时间:2021-08
- 期刊:
- 影响因子:2.5
- 作者:Xinyuan Liu;Yang Yang-Yang;Hui Guo
- 通讯作者:Xinyuan Liu;Yang Yang-Yang;Hui Guo
High-order local discontinuous Galerkin method for simulating wormhole propagation
- DOI:10.1016/j.cam.2018.10.021
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Lulu Tian;Ziyao Xu;Yang Yang-Yang;Ning Qi
- 通讯作者:Hui Guo;Lulu Tian;Ziyao Xu;Yang Yang-Yang;Ning Qi
Bound-preserving discontinuous Galerkin methods with second-order implicit pressure explicit concentration time marching for compressible miscible displacements in porous media
- DOI:10.1016/j.jcp.2022.111240
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Wenjing Feng;Hui Guo;Yue Kang;Yang Yang-Yang
- 通讯作者:Wenjing Feng;Hui Guo;Yue Kang;Yang Yang-Yang
Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation
- DOI:10.1051/m2an/2021020
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Hui Guo;Rui-yu Jia;Lulu Tian;Yang Yang-Yang
- 通讯作者:Hui Guo;Rui-yu Jia;Lulu Tian;Yang Yang-Yang
High-order bound-preserving finite difference methods for multispecies and multireaction detonations
多物种和多反应爆炸的高阶保界有限差分法
- DOI:10.1007/s42967-020-00117-y
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Jie Du;Yang Yang
- 通讯作者:Yang Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Yang其他文献
Dynamic Response Analysis of the Coal Gangue-like Elastic Rock Sphere Impact on the Massless Tail Beam Based on Contact-Structure Theory and FEM
基于接触结构理论和有限元的煤矸石类弹性岩球撞击无质量尾梁动力响应分析
- DOI:
10.1155/2019/6030542 - 发表时间:
2019-10 - 期刊:
- 影响因子:1.6
- 作者:
Yang Yang;Lirong Wan;Zhengyuan Xin - 通讯作者:
Zhengyuan Xin
NORA circuit design using neuron-MOS transistors
使用神经元 MOS 晶体管的 NORA 电路设计
- DOI:
10.1109/icnc.2014.6975831 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
G. Hang;Xuanchang Zhou;Yang Yang;Danyan Zhang - 通讯作者:
Danyan Zhang
Identification of the Immunoglobulin E Epitope of Arginine Kinase, an Important Allergen from Crassostrea angulata
角牡蛎重要过敏原精氨酸激酶免疫球蛋白 E 表位的鉴定
- DOI:
10.1021/acs.jafc.2c05420 - 发表时间:
2022 - 期刊:
- 影响因子:6.1
- 作者:
Fei Huan;Shuai Gao;Tian-Jiao Han;Meng Liu;Meng-Si Li;Yang Yang;Yi-Yu Chen;Dong Lai;Min-Jie Cao;Guang-Ming Liu - 通讯作者:
Guang-Ming Liu
Advances in the research on quantum interference effects in charge transport on a single-molecule scale
单分子尺度电荷输运量子干涉效应研究进展
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Song Hang;Hu Yong;Li Xiaohui;Zhao Shiqiang;Feng Anni;Liu Junyang;Yang Yang;Hong Wenjing - 通讯作者:
Hong Wenjing
CO2 oxidative dehydrogenation of n-butane to butadiene over CrOx supported on CeZr solid solution
CeZr固溶体负载CrOx上正丁烷CO2氧化脱氢制丁二烯
- DOI:
10.1016/j.mcat.2022.112262 - 发表时间:
2022-05 - 期刊:
- 影响因子:4.6
- 作者:
He Zhen-Hong;Wu Bao-Ting;Xia Yu;Yang Shao-Yan;Wang Zhong-Yu;Wang Kuan;Yang Yang;Liu Zhao-Tie - 通讯作者:
Liu Zhao-Tie
Yang Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Yang', 18)}}的其他基金
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
- 批准号:
2220373 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
CAREER: Synergistic Inverse Wave Analysis and Computation
职业:协同逆波分析和计算
- 批准号:
2237534 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Piezoelectric Mechanocatalytic Destruction of PFAS in Solid Matrices at Ambient Conditions: An Integrated Research and Education Plan
职业:环境条件下固体基质中 PFAS 的压电机械催化破坏:综合研究和教育计划
- 批准号:
2237080 - 财政年份:2023
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
- 批准号:
2145455 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Engineered SAM-Dependent Enzymes for Stereoselective Alkylation Reactions
职业:用于立体选择性烷基化反应的工程 SAM 依赖性酶
- 批准号:
2145749 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
CAREER: Development of Constrained Multicomponent Density Functional Theory and Accurate and Efficient Incorporation of Nuclear Quantum Effects in ab initio Molecular Dynamics
职业:约束多组分密度泛函理论的发展以及从头算分子动力学中准确有效地结合核量子效应
- 批准号:
2238473 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices
ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS
- 批准号:
2120452 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Collaborative Research: A New Rational Design of Functionally Graded Materials for Durable Lithium-Ion Batteries
合作研究:耐用锂离子电池功能梯度材料的新合理设计
- 批准号:
1949840 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
- 批准号:
2006881 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
相似海外基金
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2022
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110774 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110768 - 财政年份:2021
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2020
- 资助金额:
$ 23.7万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




