ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices

ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS

基本信息

  • 批准号:
    2120452
  • 负责人:
  • 金额:
    $ 22.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Per- and polyfluorinated alkyl substances (PFAS) are a group of chemicals that have been widely used for decades. As additives in numerous consumer products, PFAS have many desirable properties, including exceptional chemical resistance. However, this property makes them very difficult to remove from water using current treatment processes. The chemical stability also makes PFAS persist in the environment, causing significant concerns for human and ecological health. One promising way to treat PFAS in water to benign end products is electrochemical oxidation. Scientists and engineers have been exploring various strategies to enhance performance, including employing nanotechnology enabled catalysts. However, expensive metals are often required in this approach, and selective destruction of PFAS in the water that contains various other organic compounds has been challenging. The proposed research addresses these drawbacks through the development of next-generation catalysts that can selectively bind with and destroy PFAS even when the water contains many other compounds. This goal will be pursued by manipulating palladium (Pd) and nickel (Ni) catalysts to be atomically dispersed, a process known as ‘single-atom catalysis’ (SAC). SAC is the theoretical limit of downsizing materials, and represents the state-of-science advancement beyond nanotechnology. The outcomes of this research project will include development of a laboratory-scale prototype SAC electrochemical reactor tested with PFAS contaminated water. Results will be disseminated through reports, scientific journals, conferences, and lectures. This project will train graduate and undergraduate students at two universities to perform interdisciplinary research under a highly collaborative environment. High school students will be recruited via summer research internship and outreach courses, increasing scientific literacy and developing the Nation’s STEM workforce. The overarching objective of the proposed project is to develop an innovative electrocatalytic process that can oxidatively destroy PFAS in complex water matrices to benign end products. This project is one of the first studies to explore SAC – the theoretical limit of material downsizing – as the target electrocatalyst architecture to achieve highly selective and efficient anodic destruction of PFAS. The focus of this research is on Pd and Ni catalysts based on their proven performance for PFAS degradation at nano-scale. The SAC configuration has numerous advantages over existing catalysis technology. SAC allows tunable metal-ligand interactions and coordination environments that are essential for i) selective binding of the metal catalytic centers to functional groups of PFAS, and ii) direct electron transfer from PFAS to the anode. In addition, extremely low consumption of raw materials and low-cost synthesis procedures for SAC alleviate or possibly eliminate cost concerns when using noble metals like Pd. Finally, SACs are likely much more stable than metallic clusters, an important consideration for reactor implementation. The research is based on the underlying hypothesis that SAC architecture eliminates metal-metal interactions that are inherent in metallic, crystalline nanoclusters, resulting in PFAS degradation kinetics enhanced to the maximum extent possible. This hypothesis will be tested through characterization of the synthesized materials using state-of-the-science EXASF, XANES, HAADF-STEM, and in-situ FTIR techniques. Reaction products will be identified using advanced chemical analytical techniques to correlate material property and PFAS degradation pathways. The successful completion of this project will advance understanding of SAC synthesis, SAC-driven electrocatalysis, and establish new strategies for PFAS destruction. The collaborative team consisting of two research groups at two institutions with complimentary specialties will provide unique multidisciplinary, collaborative training opportunities to participating graduate and undergraduate students. Summer courses focusing on fluorine chemistry and electrochemistry will be developed for high school students and teachers. The project team is committed to recruiting underrepresented students for all outreach and training activities to diversify the Nation’s STEM workforce and promote an inclusive culture for research and learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟和多氟烷基物质(PFAS)是一组已广泛使用数十年的化学品。作为许多消费品中的添加剂,PFAS具有许多理想的特性,包括优异的耐化学性。然而,这种性质使得它们很难使用当前的处理工艺从水中去除。化学稳定性也使PFAS在环境中持久存在,对人类和生态健康造成重大影响。电化学氧化法是一种很有前途的处理PFAS的方法。科学家和工程师一直在探索各种策略来提高性能,包括采用纳米技术启用催化剂。然而,这种方法通常需要昂贵的金属,并且在含有各种其他有机化合物的水中选择性破坏PFAS一直具有挑战性。这项研究通过开发下一代催化剂来解决这些缺点,即使水中含有许多其他化合物,催化剂也可以选择性地与PFAS结合并破坏PFAS。这一目标将通过操纵钯(Pd)和镍(Ni)催化剂以原子分散来实现,这一过程称为“单原子催化”(SAC)。SAC是缩小材料尺寸的理论极限,代表了超越纳米技术的科学进步。该研究项目的成果将包括开发实验室规模的原型SAC电化学反应器,并使用PFAS污染水进行测试。研究结果将通过报告、科学期刊、会议和讲座进行传播。该项目将培训两所大学的研究生和本科生在高度合作的环境下进行跨学科研究。高中生将通过暑期研究实习和推广课程招募,提高科学素养和发展国家的STEM劳动力。拟议项目的总体目标是开发一种创新的电催化过程,可以氧化破坏复杂的水基质中的PFAS,以产生良性的最终产品。该项目是探索SAC -材料缩小的理论极限-作为目标电催化剂结构以实现PFAS的高选择性和高效阳极破坏的首批研究之一。本研究的重点是Pd和Ni催化剂的基础上,他们的证明性能PFAS降解纳米尺度。SAC配置具有优于现有催化技术的许多优点。SAC允许可调的金属-配体相互作用和配位环境,这对于i)金属催化中心与PFAS的官能团的选择性结合和ii)从PFAS到阳极的直接电子转移是必不可少的。此外,SAC的原材料消耗极低和低成本合成程序减轻或可能消除使用贵金属如Pd时的成本问题。最后,SAC可能比金属团簇稳定得多,这是反应堆实施的一个重要考虑因素。该研究基于以下基本假设:SAC结构消除了金属晶体纳米团簇中固有的金属-金属相互作用,从而最大限度地提高了PFAS降解动力学。这一假设将通过使用最先进的EXASF、XANES、HAADF-STEM和原位FTIR技术表征合成材料来进行测试。将使用先进的化学分析技术来识别反应产物,以关联材料特性和PFAS降解途径。该项目的成功完成将促进对SAC合成,SAC驱动的电催化的理解,并建立PFAS销毁的新策略。该合作团队由两个研究小组组成,两个研究小组在两个机构与免费专业将提供独特的多学科,合作培训的机会,参与研究生和本科生。将为高中学生和教师开设以氟化学和电化学为重点的暑期课程。该项目团队致力于招募代表性不足的学生参加所有推广和培训活动,以使国家的STEM劳动力多样化,并促进研究和学习的包容性文化。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Yang其他文献

Dynamic Response Analysis of the Coal Gangue-like Elastic Rock Sphere Impact on the Massless Tail Beam Based on Contact-Structure Theory and FEM
基于接触结构理论和有限元的煤矸石类弹性岩球撞击无质量尾梁动力响应分析
  • DOI:
    10.1155/2019/6030542
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yang Yang;Lirong Wan;Zhengyuan Xin
  • 通讯作者:
    Zhengyuan Xin
NORA circuit design using neuron-MOS transistors
使用神经元 MOS 晶体管的 NORA 电路设计
Identification of the Immunoglobulin E Epitope of Arginine Kinase, an Important Allergen from Crassostrea angulata
角牡蛎重要过敏原精氨酸激酶免疫球蛋白 E 表位的鉴定
  • DOI:
    10.1021/acs.jafc.2c05420
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Fei Huan;Shuai Gao;Tian-Jiao Han;Meng Liu;Meng-Si Li;Yang Yang;Yi-Yu Chen;Dong Lai;Min-Jie Cao;Guang-Ming Liu
  • 通讯作者:
    Guang-Ming Liu
Advances in the research on quantum interference effects in charge transport on a single-molecule scale
单分子尺度电荷输运量子干涉效应研究进展
CO2 oxidative dehydrogenation of n-butane to butadiene over CrOx supported on CeZr solid solution
CeZr固溶体负载CrOx上正丁烷CO2氧化脱氢制丁二烯
  • DOI:
    10.1016/j.mcat.2022.112262
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    He Zhen-Hong;Wu Bao-Ting;Xia Yu;Yang Shao-Yan;Wang Zhong-Yu;Wang Kuan;Yang Yang;Liu Zhao-Tie
  • 通讯作者:
    Liu Zhao-Tie

Yang Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Yang', 18)}}的其他基金

Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
  • 批准号:
    2220373
  • 财政年份:
    2023
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
CAREER: Synergistic Inverse Wave Analysis and Computation
职业:协同逆波分析和计算
  • 批准号:
    2237534
  • 财政年份:
    2023
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Continuing Grant
CAREER: Piezoelectric Mechanocatalytic Destruction of PFAS in Solid Matrices at Ambient Conditions: An Integrated Research and Education Plan
职业:环境条件下固体基质中 PFAS 的压电机械催化破坏:综合研究和教育计划
  • 批准号:
    2237080
  • 财政年份:
    2023
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Continuing Grant
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
  • 批准号:
    2145455
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Continuing Grant
CAREER: Engineered SAM-Dependent Enzymes for Stereoselective Alkylation Reactions
职业:用于立体选择性烷基化反应的工程 SAM 依赖性酶
  • 批准号:
    2145749
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
CAREER: Development of Constrained Multicomponent Density Functional Theory and Accurate and Efficient Incorporation of Nuclear Quantum Effects in ab initio Molecular Dynamics
职业:约束多组分密度泛函理论的发展以及从头算分子动力学中准确有效地结合核量子效应
  • 批准号:
    2238473
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
  • 批准号:
    2006881
  • 财政年份:
    2020
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: A New Rational Design of Functionally Graded Materials for Durable Lithium-Ion Batteries
合作研究:耐用锂离子电池功能梯度材料的新合理设计
  • 批准号:
    1949840
  • 财政年份:
    2020
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
RAPID: Collaborative: PPSRC: Privacy-Preserving Self-Reporting for COVID-19
RAPID:协作:PPSRC:COVID-19 隐私保护自我报告
  • 批准号:
    2034364
  • 财政年份:
    2020
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非靶向代谢组学分析全氟多氟化合物(PFAS)诱导乳腺癌代谢紊乱和整合素ITGB信号通路障碍机制
  • 批准号:
    JCZRLH202500930
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
市政污泥腐殖化及土地利用过程微塑料和PFAS转化机制及环境风险研究
  • 批准号:
    JCZRQN202500332
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
污泥阴燃过程中PFAS降解行为与Ca/Fe驱 动的关联机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
典型环境健康风险因素防控技术应用研究-PFAS环境风险评估与绿色低碳治理技术
  • 批准号:
    2025C02214
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
污泥Fe系高级氧化深度脱水过程中PFAS转化调控机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
市政污泥高级氧化-骨架构建体预处理-热解联合工艺对短链PFAS的协同降解研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
饮用水膜处理系统服役中PFAS释放规律及去除机理研究
  • 批准号:
    52370137
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
污泥深度脱水中PFAS转化调控与EPS指纹的响应关联机制
  • 批准号:
    42307520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁泥碳、硫缺陷调控构建内电场驱动催化体系修复地下水PFAS的界面作用机制
  • 批准号:
    42307065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
  • 批准号:
    22366033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207191
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Thermal Regeneration of PFAS-laden Granular Activated Carbon presents an Opportunity to Break the Forever PFAS Cycle
合作研究:ERASE-PFAS:充满 PFAS 的颗粒活性炭的热再生提供了打破永久 PFAS 循环的机会
  • 批准号:
    2219832
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225596
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225535
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: A "concentrate-and-destroy" technology for treating per- and polyfluoroalkyl substances using a new class of adsorptive photocatalysts
合作研究:ERASE-PFAS:一种使用新型吸附光催化剂处理全氟烷基和多氟烷基物质的“浓缩和破坏”技术
  • 批准号:
    2244985
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207235
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225750
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Thermal Regeneration of PFAS-laden Granular Activated Carbon presents an Opportunity to Break the Forever PFAS Cycle
合作研究:ERASE-PFAS:充满 PFAS 的颗粒活性炭的热再生提供了打破永久 PFAS 循环的机会
  • 批准号:
    2219833
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Collaborative Research: Development of Quantitative Tools to Assess the Mechanisms and Full Poten-tial of UV-ARPs for the Treatment of PFASs in Water
ERASE-PFAS:合作研究:开发定量工具来评估 UV-ARP 处理水中 PFAS 的机制和全部潜力
  • 批准号:
    2050882
  • 财政年份:
    2021
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: A "concentrate-and-destroy" technology for treating per- and polyfluoroalkyl substances using a new class of adsorptive photocatalysts
合作研究:ERASE-PFAS:一种使用新型吸附光催化剂处理全氟烷基和多氟烷基物质的“浓缩和破坏”技术
  • 批准号:
    2041059
  • 财政年份:
    2021
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了