Stochastic Constitutive Models for Nano-Scale Heat Transport
纳米级热传输的随机本构模型
基本信息
- 批准号:1819011
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At the nano-mechanical scale, heat conduction processes exhibit a wide variety of phenomena that are different from macroscopic observations. Conventional models, such as the Fourier's law, are inadequate. In addition, there are overwhelming observations that suggest that heat conduction properties depend critically on the system size and geometry, creating a unique challenge for the portability of the mathematical models. This project aims to bridge the modeling gap by developing a first-principle based approach that leads to a hierarchy of generalized models. The new models have the potential capabilities to describe various important behavior of heat conduction processes, including the wave propagation characteristic, fluctuation, delay, and more. The proposed approach will derive new constitutive models from first-principle, and mathematically, the models are obtained from a microscopic many-particle description with three levels of reductions: A spatial reduction that eliminates atomic-level details and singles out the dynamics of the average energy, a temporal reduction that removes the nonlocality in time, and a statistical reduction that efficiently samples scale-dependent, statistical noises. Such a first-principle based approach derives its benefit from its combination of mathematical transparency, robustness, and amenability to error estimates. Unlike conventional theories, the current approach yields a stochastic constitutive model. Combined with energy balance, the constitutive models lead to stochastic partial differential equations, for which there is a wealth of interesting mathematical and computational issues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在纳米力学尺度下,热传导过程表现出与宏观观察不同的各种现象。 传统的模型,如傅立叶定律,是不够的。此外,有压倒性的观察结果表明,热传导特性严重依赖于系统的大小和几何形状,这对数学模型的可移植性提出了独特的挑战。该项目旨在通过开发一种基于第一原理的方法来弥合建模差距,该方法导致了广义模型的层次结构。新模型具有描述热传导过程的各种重要行为的潜在能力,包括波的传播特性,波动,延迟等。所提出的方法将从第一原理推导出新的本构模型,并且在数学上,这些模型是从具有三个级别的减少的微观多粒子描述中获得的:消除原子级细节并挑出平均能量的动态的空间减少,消除时间上的非局部性的时间减少,以及有效地对尺度相关的统计噪声进行采样的统计减少。这种基于第一原理的方法得益于其数学透明性、鲁棒性和对误差估计的顺从性的组合。与传统的理论,目前的方法产生一个随机本构模型。与能量平衡相结合,本构模型导致随机偏微分方程,其中有大量有趣的数学和计算问题。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced-Order Modeling Approach for Electron Transport in Molecular Junctions
分子结中电子传输的降阶建模方法
- DOI:10.1021/acs.jctc.9b01090
- 发表时间:2020
- 期刊:
- 影响因子:5.5
- 作者:Chu, Weiqi;Li, Xiantao
- 通讯作者:Li, Xiantao
The computation of local stress in ab initio molecular simulations
- DOI:10.1088/1361-651x/ab2b8a
- 发表时间:2018-12
- 期刊:
- 影响因子:1.8
- 作者:Xiantao Li
- 通讯作者:Xiantao Li
Nonlinear Constitutive Models for Nano-Scale Heat Conduction
纳米级热传导的非线性本构模型
- DOI:10.1137/19m1257664
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Chu, Weiqi;Li, Xiantao
- 通讯作者:Li, Xiantao
Absorbing boundary conditions for time-dependent Schrödinger equations: A density-matrix formulation
瞬态薛定谔方程的吸收边界条件:密度矩阵公式
- DOI:10.1063/1.5079326
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Li, Xiantao
- 通讯作者:Li, Xiantao
The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics
- DOI:10.4310/cms.2019.v17.n2.a10
- 发表时间:2017-08
- 期刊:
- 影响因子:1
- 作者:Weiqi Chu;Xiantao Li
- 通讯作者:Weiqi Chu;Xiantao Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiantao Li其他文献
Quantum simulation for partial differential equations with physical boundary or interface conditions
具有物理边界或界面条件的偏微分方程的量子模拟
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.1
- 作者:
Shiju Jin;Xiantao Li;Nana Liu;Yue Yu - 通讯作者:
Yue Yu
The derivation and approximation of coarse-grained dynamics from Langevin dynamics.
朗之万动力学的粗粒度动力学的推导和近似。
- DOI:
10.1063/1.4967936 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lina Ma;Xiantao Li;Chun Liu - 通讯作者:
Chun Liu
Numerical Approximations of Pressureless and Isothermal Gas Dynamics
无压等温气体动力学的数值近似
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:2.9
- 作者:
F. Bouchut;Shi Jin;Xiantao Li - 通讯作者:
Xiantao Li
Epilepsy and driving: A preliminary survey of people with epilepsy at an epilepsy clinic in China
- DOI:
10.1016/j.yebeh.2024.109668 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Xiantao Li;Yuan Pei;Yan Ge;Lan Xu;Yue Zhang;Li Zheng;Ding Ding;Zhen Hong; PeiminYu - 通讯作者:
PeiminYu
A coarse‐grained molecular dynamics model for crystalline solids
- DOI:
10.1002/nme.2892 - 发表时间:
2010-08 - 期刊:
- 影响因子:2.9
- 作者:
Xiantao Li - 通讯作者:
Xiantao Li
Xiantao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiantao Li', 18)}}的其他基金
Optimal Control of Open Quantum Systems
开放量子系统的最优控制
- 批准号:
2111221 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Data-Driven Reduced-Order Modeling of Ab Initio Molecular Dynamics
从头算分子动力学的数据驱动降阶建模
- 批准号:
1953120 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Modeling complex properties of material interfaces: from quantum and atomic to macroscopic scales
模拟材料界面的复杂特性:从量子和原子到宏观尺度
- 批准号:
1522617 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Coarse-grained Molecular Dynamics Models for Crystalline Solids at Finite Temperature
有限温度下结晶固体的粗粒分子动力学模型
- 批准号:
1016582 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Boundary Conditions for Molecular Dynamics Simulations of Solids
固体分子动力学模拟的边界条件
- 批准号:
0609610 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Eco-Friendly Natural Basalt FRP for External Strengthening of Concrete Structures: Development of Constitutive Bond-Slip Laws and Design Models for Basalt FRP/Concrete Interface
用于混凝土结构外部加固的环保天然玄武岩 FRP:玄武岩 FRP/混凝土界面本构粘结滑移定律和设计模型的发展
- 批准号:
RGPIN-2022-03592 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Eco-Friendly Natural Basalt FRP for External Strengthening of Concrete Structures: Development of Constitutive Bond-Slip Laws and Design Models for Basalt FRP/Concrete Interface
用于混凝土结构外部加固的环保天然玄武岩 FRP:玄武岩 FRP/混凝土界面本构粘结滑移定律和设计模型的发展
- 批准号:
DGECR-2022-00481 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Launch Supplement
Development of high temperature experimental methods for validation of novel concrete constitutive models for nuclear applications
开发用于验证核应用新型混凝土本构模型的高温实验方法
- 批准号:
2620388 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Studentship
Development of high temperature experimental methods for validation of novel concrete constitutive models for nuclear applications.
开发高温实验方法来验证核应用新型混凝土本构模型。
- 批准号:
2733610 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Studentship
A Multi-scale Approach to the Development of Microstructure-aware Constitutive Models for Magnesium
开发镁微观结构感知本构模型的多尺度方法
- 批准号:
2283233 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Studentship
CAREER: Multi-Scale Modeling of Biological Gels by Coupling Langevin Equations and Fractional Viscoelastic Constitutive Models
职业:通过耦合朗之万方程和分数粘弹性本构模型对生物凝胶进行多尺度建模
- 批准号:
1751339 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Effects of sample and boundary imperfections on calibration of monotonic and cyclic constitutive models in sand
样品和边界缺陷对砂中单调和循环本构模型校准的影响
- 批准号:
529393-2018 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Engage Grants Program
Validating and Testing Geotechnical Constitutive Material Models
验证和测试岩土本构材料模型
- 批准号:
499741-2016 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Systematic Identification of Constitutive Parameters for Crystal Plasticity Models of Non-Cubic Metal Alloys
非立方金属合金晶体塑性模型本构参数的系统辨识
- 批准号:
1411102 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Micromechanical analysis of state variables for phenomenological constitutive models of soils
土壤唯象本构模型状态变量的微观力学分析
- 批准号:
254872581 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Research Grants














{{item.name}}会员




