Data-Driven Reduced-Order Modeling of Ab Initio Molecular Dynamics
从头算分子动力学的数据驱动降阶建模
基本信息
- 批准号:1953120
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in modern material science, chemistry, and cell biology involve the structural changes at the microscopic level driven by external electrical fields. A quantitative description must take into account the underlying electronic structures and the induced atomic motions, leading to complex, large-dimensional dynamical systems, for which direct simulations are expensive. This project tackles this fundamental practical difficulty by developing efficient mathematical models to significantly reduce the computational cost. The reduction also enables the application of these models to much larger systems that are of direct practical interest. The project also provides research training opportunities for graduate students.This project aims to develop reduced-order modeling techniques within the framework of ab initio calculations. The goal is to avoid repeated calculations of the electronic structures so that the overall computation can be drastically sped up. Formulated as a Galerkin projection, the techniques project the electron dynamics to subspaces with much fewer degrees of freedom, while still retaining the important mapping between the external field and the dynamics of molecules and atoms. A statistical approach is proposed so that the models be inferred from a dataset containing atomic trajectories whenever they are available. This project also includes applications to materials with complex compositions and electrical properties of biological systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代材料科学、化学和细胞生物学中的许多问题都涉及到外部电场驱动下微观水平的结构变化。定量描述必须考虑到潜在的电子结构和诱导的原子运动,导致复杂的,大尺寸的动力学系统,直接模拟是昂贵的。该项目通过开发有效的数学模型来解决这一基本的实际困难,以显着降低计算成本。减少也使这些模型的应用程序更大的系统是直接的实际利益。该项目还为研究生提供研究培训机会。该项目旨在从头计算框架内开发降阶建模技术。这样做的目的是避免重复计算电子结构,从而大大加快整体计算速度。公式化为伽辽金投影,该技术将电子动力学投影到自由度少得多的子空间,同时仍然保留了外场与分子和原子动力学之间的重要映射。提出了一种统计方法,以便从包含原子轨迹的数据集推断模型,只要它们可用。该项目还包括生物系统的复杂成分和电性能材料的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Petrov–Galerkin methods for the construction of non-Markovian dynamics preserving nonlocal statistics
用于构建保留非局部统计的非马尔可夫动力学的 PetrovGalerkin 方法
- DOI:10.1063/5.0042679
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lei, Huan;Li, Xiantao
- 通讯作者:Li, Xiantao
Random Batch Algorithms for Quantum Monte Carlo simulations
- DOI:10.4208/cicp.oa-2020-0168
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Shi Jin;Xiantao Li
- 通讯作者:Shi Jin;Xiantao Li
Stochastic Algorithms for Self-consistent Calculations of Electronic Structures
- DOI:10.1090/mcom/3826
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Tae-Eon Ko;Xiantao Li
- 通讯作者:Tae-Eon Ko;Xiantao Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiantao Li其他文献
Quantum simulation for partial differential equations with physical boundary or interface conditions
具有物理边界或界面条件的偏微分方程的量子模拟
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.1
- 作者:
Shiju Jin;Xiantao Li;Nana Liu;Yue Yu - 通讯作者:
Yue Yu
The derivation and approximation of coarse-grained dynamics from Langevin dynamics.
朗之万动力学的粗粒度动力学的推导和近似。
- DOI:
10.1063/1.4967936 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lina Ma;Xiantao Li;Chun Liu - 通讯作者:
Chun Liu
Numerical Approximations of Pressureless and Isothermal Gas Dynamics
无压等温气体动力学的数值近似
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:2.9
- 作者:
F. Bouchut;Shi Jin;Xiantao Li - 通讯作者:
Xiantao Li
Epilepsy and driving: A preliminary survey of people with epilepsy at an epilepsy clinic in China
- DOI:
10.1016/j.yebeh.2024.109668 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Xiantao Li;Yuan Pei;Yan Ge;Lan Xu;Yue Zhang;Li Zheng;Ding Ding;Zhen Hong; PeiminYu - 通讯作者:
PeiminYu
A coarse‐grained molecular dynamics model for crystalline solids
- DOI:
10.1002/nme.2892 - 发表时间:
2010-08 - 期刊:
- 影响因子:2.9
- 作者:
Xiantao Li - 通讯作者:
Xiantao Li
Xiantao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiantao Li', 18)}}的其他基金
Optimal Control of Open Quantum Systems
开放量子系统的最优控制
- 批准号:
2111221 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Stochastic Constitutive Models for Nano-Scale Heat Transport
纳米级热传输的随机本构模型
- 批准号:
1819011 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Modeling complex properties of material interfaces: from quantum and atomic to macroscopic scales
模拟材料界面的复杂特性:从量子和原子到宏观尺度
- 批准号:
1522617 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Coarse-grained Molecular Dynamics Models for Crystalline Solids at Finite Temperature
有限温度下结晶固体的粗粒分子动力学模型
- 批准号:
1016582 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Boundary Conditions for Molecular Dynamics Simulations of Solids
固体分子动力学模拟的边界条件
- 批准号:
0609610 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: Goal-Oriented Variable Transformations for Efficient Reduced-Order and Data-Driven Modeling
职业:面向目标的变量转换,用于高效的降阶和数据驱动建模
- 批准号:
2144023 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Inverse Scattering Using Data-Driven Reduced-Order Models
使用数据驱动的降阶模型进行逆散射
- 批准号:
2110265 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
DEVELOPMENT OF REDUCED ORDER ZONAL MODELS WITH DATA-DRIVEN APPROACHES FOR COMPLEX FLUID MIXING
使用数据驱动的复杂流体混合方法开发降阶分区模型
- 批准号:
2586079 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Studentship
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012686 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012255 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Development of data-driven reduced-order modeling framework for large dimensional dynamical systems and applications to vital sign signals
开发用于大维动力系统的数据驱动的降阶建模框架以及生命体征信号的应用
- 批准号:
17H03279 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reduced and full system-bath quantum dynamics of IR-driven adsorbate vibrations
红外驱动吸附物振动的减少和完整系统浴量子动力学
- 批准号:
230315027 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Research Grants
Active Self-assembly Driven by Chemistry: Enhanced Kinetics, Reduced Errors, Novel Patterns and Adaptive Nanostructures
化学驱动的主动自组装:增强动力学、减少错误、新颖模式和自适应纳米结构
- 批准号:
0933583 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant