Boundary Conditions for Molecular Dynamics Simulations of Solids

固体分子动力学模拟的边界条件

基本信息

  • 批准号:
    0609610
  • 负责人:
  • 金额:
    $ 12.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-15 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

Molecular dynamics models materials at the level of atomic scale. In a computer simulation one follows the motion of the atoms, which obeys Newton's second law. For crystalline solids, molecular dynamics offers a microscopic description of the crystal and defect structure, which is ultimately responsible for the overall material properties. It offers more insight on why the material behaves the way it does, and it has become an extremely important tool in material modeling and simulations. However due to the computational complexity, such a simulation can only be conducted for a small system. Typically it is focused around material defects where the deformation is quite large, and the atoms in the far field are eliminated. Such a truncation procedure creates artificial boundaries, where boundary conditions have to be imposed in order to take into account the missing atoms. The boundary condition provides, for example, the position of the atoms at the boundary, which will be needed in the force calculation for the atoms inside the system, and therefore required to allow the simulation to proceed. Straightforward approaches often lead to wave reflection at the boundary and therefore severely deteriorate the simulation results. This project aims to develop systematic boundary conditions that serve the following purposes: (a) prevent wave reflection at the boundary; (b) maintain the external loading; (c) control the system temperature. These boundary conditions will greatly improve the accuracy and reliability of molecular dynamics simulations and will help to study the dynamics of material defects under various kinds of loading, and in different temperature regimes. The project also involves numerical analysis aspects and applications of these methods. The proposed research will expose the students to physical modeling, large-scale simulations, mathematical analysis, and interdisciplinary research.
分子动力学在原子尺度上模拟材料。 在计算机模拟中,人们遵循原子的运动,这遵循牛顿第二定律。 对于晶体固体,分子动力学提供了晶体和缺陷结构的微观描述,这最终决定了整体材料的性质。 它提供了更多关于材料行为方式的见解,并且它已成为材料建模和模拟中非常重要的工具。 然而,由于计算的复杂性,这样的模拟只能进行一个小的系统。 通常,它集中在材料缺陷周围,其中变形相当大,并且远场中的原子被消除。 这样的截断过程创建了人工边界,其中必须施加边界条件以考虑缺失的原子。 例如,边界条件提供了边界处原子的位置,这将在系统内部原子的力计算中需要,因此需要允许模拟进行。 直接的方法往往会导致波反射的边界,因此严重恶化的模拟结果。 该项目旨在制定系统的边界条件,以达到以下目的:(a)防止边界处的波反射;(B)保持外部载荷;(c)控制系统温度。 这些边界条件将大大提高分子动力学模拟的准确性和可靠性,并将有助于研究各种载荷下的材料缺陷的动力学,在不同的温度制度。 该项目还涉及这些方法的数值分析方面和应用。 拟议的研究将使学生接触物理建模,大规模模拟,数学分析和跨学科研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiantao Li其他文献

Quantum simulation for partial differential equations with physical boundary or interface conditions
具有物理边界或界面条件的偏微分方程的量子模拟
The derivation and approximation of coarse-grained dynamics from Langevin dynamics.
朗之万动力学的粗粒度动力学的推导和近似。
  • DOI:
    10.1063/1.4967936
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lina Ma;Xiantao Li;Chun Liu
  • 通讯作者:
    Chun Liu
Numerical Approximations of Pressureless and Isothermal Gas Dynamics
无压等温气体动力学的数值近似
Epilepsy and driving: A preliminary survey of people with epilepsy at an epilepsy clinic in China
  • DOI:
    10.1016/j.yebeh.2024.109668
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiantao Li;Yuan Pei;Yan Ge;Lan Xu;Yue Zhang;Li Zheng;Ding Ding;Zhen Hong; PeiminYu
  • 通讯作者:
    PeiminYu
A coarse‐grained molecular dynamics model for crystalline solids

Xiantao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiantao Li', 18)}}的其他基金

Optimal Control of Open Quantum Systems
开放量子系统的最优控制
  • 批准号:
    2111221
  • 财政年份:
    2021
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Standard Grant
Data-Driven Reduced-Order Modeling of Ab Initio Molecular Dynamics
从头算分子动力学的数据驱动降阶建模
  • 批准号:
    1953120
  • 财政年份:
    2020
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Standard Grant
Stochastic Constitutive Models for Nano-Scale Heat Transport
纳米级热传输的随机本构模型
  • 批准号:
    1819011
  • 财政年份:
    2018
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Standard Grant
Modeling complex properties of material interfaces: from quantum and atomic to macroscopic scales
模拟材料界面的复杂特性:从量子和原子到宏观尺度
  • 批准号:
    1522617
  • 财政年份:
    2015
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Standard Grant
Coarse-grained Molecular Dynamics Models for Crystalline Solids at Finite Temperature
有限温度下结晶固体的粗粒分子动力学模型
  • 批准号:
    1016582
  • 财政年份:
    2010
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Standard Grant

相似海外基金

Elucidating molecular mechanisms of the water-induced swallowing reflex under non-thirsty and thirsty conditions: the importance of TRPV4
阐明非口渴和口渴条件下水诱导吞咽反射的分子机制:TRPV4的重要性
  • 批准号:
    24K12880
  • 财政年份:
    2024
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptation of marine zooplankton to climate change conditions: a multi-omic study of molecular mechanisms.
海洋浮游动物对气候变化条件的适应:分子机制的多组学研究。
  • 批准号:
    23K25049
  • 财政年份:
    2024
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stabilizing CROP yield under unfavourable conditions by molecular PRIM(E)ing
通过分子 PRIM(E)ing 在不利条件下稳定作物产量
  • 批准号:
    EP/Y00812X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Research Grant
Define the molecular bases for cryptococcal adaptation to host conditions by the RAM pathway
通过 RAM 途径定义隐球菌适应宿主条件的分子基础
  • 批准号:
    10627371
  • 财政年份:
    2023
  • 资助金额:
    $ 12.64万
  • 项目类别:
Investigation of physicochemical factors that allow the formation of noncanonical nucleic acid structures under molecular crowding conditions
研究在分子拥挤条件下形成非规范核酸结构的物理化学因素
  • 批准号:
    23K04935
  • 财政年份:
    2023
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predicting and understanding potato dormancy under interacting pre-harvest and postharvest conditions: a prerequisite for molecular breeding
预测和理解相互作用的收获前和收获后条件下的马铃薯休眠:分子育种的先决条件
  • 批准号:
    2753771
  • 财政年份:
    2022
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Studentship
Crystal chemistry of phmtoluminscent multi-metal complexes based on their elastic molecular frameworks under extreme pressure conditions
极压条件下基于弹性分子骨架的光致发光多金属配合物的晶体化学
  • 批准号:
    22K05147
  • 财政年份:
    2022
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptation of marine zooplankton to climate change conditions: a multi-omic study of molecular mechanisms.
海洋浮游动物对气候变化条件的适应:分子机制的多组学研究。
  • 批准号:
    22H03795
  • 财政年份:
    2022
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Determining the molecular mechanisms allow cancer stem cells to retain a survival advantage under starvation conditions.
确定分子机制可以使癌症干细胞在饥饿条件下保持生存优势。
  • 批准号:
    22K06613
  • 财政年份:
    2022
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using ribosomes as molecular thermometers to predict optimal growth conditions and peer into the ancient history of life on Earth
使用核糖体作为分子温度计来预测最佳生长条件并探究地球上生命的古代历史
  • 批准号:
    2601318
  • 财政年份:
    2021
  • 资助金额:
    $ 12.64万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了