The Discontinuous Petrov Galerkin Method with Optimal Test Functions for Compressible Flows and Ductile-to-Brittle Phase Transitions
具有最佳测试函数的不连续 Petrov Galerkin 方法用于可压缩流动和延性到脆性相变
基本信息
- 批准号:1819101
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims at a further development of the Discontinuous Petrov Galerkin (DPG) Finite Element (FE) method with optimal test functions introduced by Jay Gopalakrishnan and Leszek Demkowicz in 2009. The DPG methodology represents a breakthrough in the Finite Element simulations of challenging Engineering and Science processes. The proposed research directions are: the solution of 2D and 3D compressible flow problems, the modeling of ductile to brittle phase transitions using Phase Fields theories. The method will have a lasting impact on the construction of software for difficult applications requiring high accuracy. Application areas targeted in this project include aerospace (transonic flows) and high energy density electrical motors (insulation failure), building on collaborations with Boeing and the Navy.The DPG method minimizes residuals in the dual norm corresponding to a specified test norm. Computation of the residual requires inversion of the Riesz operator in the test space. With the use of broken test spaces and localizable test norms, the inversion can be done element-wise using standard Galerkin and "enriched" spaces. With the error of inverting the Riesz operator controlled locally, i.e. on the element level, the method automatically guarantees discrete stability for any well-posed linear problem in a Hilbert setting, in the sense of the classic theory of closed operators. The methodology leads to uniform stability for singular perturbation problems and, being a minimization method, does not suffer from any preasymptotic instabilities. The residual is computed rather than estimated and provides a basis for automatic adaptivity. Optimality in the L2-norms does not preclude the Gibbs phenomenon and this project aims at extending the DPG technology to Banach spaces. The first focus area deals with a difficult classical subject, namely compressible Navier-Stokes equations with applications to flow around a three-dimensional wing model and its simplified model, the full potential equation. The second line of research aims at modeling ductile-to-brittle phase transitions in polymers using Phase Field theories, with applications to understanding damage and crack initiation in polymer insulation. In both application areas above, solutions experience strong boundary or/and internal layers. The proposed work includes both analysis and software development in a joint computational effort with Cracow University of Technology, Boeing, and collaborators at the University of Texas at Austin.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在进一步发展不连续彼得罗夫伽辽金(DPG)有限元(FE)方法,并在2009年由Jay Gopalakrishnan和Leszek Demkowicz引入了最佳测试函数。DPG方法代表了具有挑战性的工程和科学过程的有限元模拟的突破。提出的研究方向是:二维和三维可压缩流动问题的求解,利用相场理论模拟韧脆相变。该方法将对需要高精度的困难应用程序的软件构建产生持久的影响。该项目的目标应用领域包括航空航天(跨音速流)和高能量密度电机(绝缘失效),该项目建立在与波音公司和海军的合作基础上。DPG方法最大限度地减少了与指定测试规范对应的对偶规范中的残差。剩余的计算需要在测试空间中反演Riesz算子。通过使用破碎的测试空间和可局部化的测试范数,反演可以使用标准Galerkin和“丰富”空间进行。通过局部控制Riesz算子的逆运算误差,即在元素级别上,该方法自动保证Hilbert环境中任何适定线性问题的离散稳定性,从经典的闭算子理论的意义上来说。该方法导致奇异摄动问题的一致稳定性,作为一种最小化方法,不遭受任何前渐近不稳定性。残差是计算的,而不是估计的,并提供了一个自动适应的基础。L2-范数的最优性并不排除吉布斯现象,该项目旨在将DPG技术扩展到Banach空间。第一个重点领域涉及一个困难的经典主题,即可压缩纳维尔-斯托克斯方程与应用程序的三维机翼模型及其简化模型,全势方程周围的流动。研究的第二条线旨在使用相场理论对聚合物中的韧脆相变进行建模,并应用于理解聚合物绝缘中的损伤和裂纹萌生。在上述两个应用领域中,解决方案都具有强大的边界层或/和内部层。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sum factorization for fast integration of DPG matrices on prismatic elements
- DOI:10.1016/j.finel.2020.103385
- 发表时间:2020-05
- 期刊:
- 影响因子:3.1
- 作者:Jacob Badger;Stefan Henneking;L. Demkowicz
- 通讯作者:Jacob Badger;Stefan Henneking;L. Demkowicz
The DPG-Star method
DPG-Star 方法
- DOI:10.1016/j.camwa.2020.01.012
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Demkowicz, L;Gopalakrishnan, J;Keith, B
- 通讯作者:Keith, B
Construction of DPG Fortinoperators revisited.Comp.andMath.Appl., 80:2261–2271, 2020
重新审视 DPG Fortinoperators 的构建。Comp.andMath.Appl., 80:2261–2271, 2020
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Demkowicz, L;Zanotti, P
- 通讯作者:Zanotti, P
Alternative Enriched Test Spaces in the DPG Method for Singular Perturbation Problems
- DOI:10.1515/cmam-2018-0207
- 发表时间:2019-04
- 期刊:
- 影响因子:1.3
- 作者:J. Salazar;Jaime Mora;L. Demkowicz
- 通讯作者:J. Salazar;Jaime Mora;L. Demkowicz
Error representation of the time-marching DPG scheme
时间推进 DPG 方案的误差表示
- DOI:10.1016/j.cma.2021.114480
- 发表时间:2022
- 期刊:
- 影响因子:7.2
- 作者:Munoz-Matute, J.;Demkowicz, L;Pardo, D.
- 通讯作者:Pardo, D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leszek Demkowicz其他文献
An anisotropic <em>hp</em>-adaptation framework for ultraweak discontinuous Petrov–Galerkin formulations
- DOI:
10.1016/j.camwa.2024.05.025 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Ankit Chakraborty;Stefan Henneking;Leszek Demkowicz - 通讯作者:
Leszek Demkowicz
A locking-free $$hp$$ DPG method for linear elasticity with symmetric stresses
- DOI:
10.1007/s00211-012-0476-6 - 发表时间:
2012-06-26 - 期刊:
- 影响因子:2.200
- 作者:
Jamie Bramwell;Leszek Demkowicz;Jay Gopalakrishnan;Weifeng Qiu - 通讯作者:
Weifeng Qiu
A vectorial envelope Maxwell formulation for electromagnetic waveguides with application to nonlinear fiber optics
用于电磁波导的矢量包络麦克斯韦公式及其在非线性光纤光学中的应用
- DOI:
10.1016/j.camwa.2025.05.026 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:2.500
- 作者:
Stefan Henneking;Jacob Grosek;Leszek Demkowicz - 通讯作者:
Leszek Demkowicz
A DPG method for planar div-curl problems
- DOI:
10.1016/j.camwa.2024.01.023 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Jiaqi Li;Leszek Demkowicz - 通讯作者:
Leszek Demkowicz
Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version
使用现代 hp 版本和经典 h 版本对吉尔克曼问题进行有限元分析
- DOI:
10.1007/s00366-011-0223-0 - 发表时间:
2011-06-03 - 期刊:
- 影响因子:4.900
- 作者:
Antti H. Niemi;Ivo Babuška;Juhani Pitkäranta;Leszek Demkowicz - 通讯作者:
Leszek Demkowicz
Leszek Demkowicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leszek Demkowicz', 18)}}的其他基金
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Elements:Software A Scalable Open-Source hp-Adaptive FE Software for Complex Multiphysics Applications
元素:软件 适用于复杂多物理场应用的可扩展开源 hp 自适应有限元软件
- 批准号:
2103524 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions. Space-Time Formulations and Elements of Irregular Shapes
具有最佳测试函数的不连续 Petrov Galerkin (DPG) 方法。
- 批准号:
1418822 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
A Request for Support for Students to Attend the Eighth US National Congress on Computational Mechanics
请求支持学生参加第八届美国计算力学全国代表大会
- 批准号:
0508603 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Entropy-Controlled Adaptive Finite Element Simulations of Compressible Gas Flow
数学科学:可压缩气体流动的熵控制自适应有限元模拟
- 批准号:
9414480 - 财政年份:1995
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
- 批准号:12361076
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多介质可压缩流体的ALE间断Petrov-Galerkin方法研究
- 批准号:11761054
- 批准年份:2017
- 资助金额:36.5 万元
- 项目类别:地区科学基金项目
基于间断petrov有限元的Trefftz方法及其在雷达散射截面中的应用
- 批准号:11501529
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Continuous space-time multi-level hp Galerkin-Petrov finite elements for the direct numerical simulation of laser power bed fusion processes
用于激光功率床聚变过程直接数值模拟的连续时空多级 HP Galerkin-Petrov 有限元
- 批准号:
441506233 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Cluster-Robust Estimates for Galerkin and Petrov-Galerkin Discretizations of Elliptic Eigenvalue Problems
椭圆特征值问题的 Galerkin 和 Petrov-Galerkin 离散化的聚类鲁棒估计
- 批准号:
1522471 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions. Space-Time Formulations and Elements of Irregular Shapes
具有最佳测试函数的不连续 Petrov Galerkin (DPG) 方法。
- 批准号:
1418822 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Discontinuous Petrov Galerkin Methods and Applications
间断 Petrov Galerkin 方法及应用
- 批准号:
1318916 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Turblence Analysis Using Petrov-Galerkin Finite Element Method with Exponential Weighting Functions and Its Integrated Software Development
指数加权函数Petrov-Galerkin有限元法湍流分析及其集成软件开发
- 批准号:
23560075 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Petrov-Galerkin Enrichment Methods for Porous Media
多孔介质的 Petrov-Galerkin 富集方法
- 批准号:
0610039 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant