Inexact Optimization Methods for Structured Nonlinear Optimization
结构化非线性优化的不精确优化方法
基本信息
- 批准号:1819161
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New efficient computational algorithms will be developed for solving large-scale optimization problems with particular structure. Structured nonlinear optimization has played a central role in various modern applications ranging from image processing, optimal control to stochastic learning in big data area. The algorithms developed in the project will provide solutions in a more robust and faster way, and will be made publicly available to benefit both optimization and computational data science community. The student supported in this project will have excellent opportunities for interdisciplinary research.The current methods for solving structured optimization problems often need to solve a sequence of subproblems according to the problem structure. This project aims to develop efficient methods and software that allow to solve their subproblems inexactly while still theoretically guarantee the global convergence and maintain the same or almost the same computational complexity of the corresponding methods that require exact solve of the subproblems. In particular, the investigator will develop (I) a framework of inexact alternating direction methods of multipliers for separable convex optimization, where the subproblem is solved to the accuracy relative to the whole problem KKT error; (II) inexact stochastic gradient methods for the composite optimization, which combines the(accelerated) proximal gradient methods and stochastic variance reduction techniques; (III) inexact active-set algorithms for polyhedral constrained nonlinear optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为解决具有特殊结构的大规模优化问题,将发展新的高效计算算法。结构化非线性优化在图像处理、最优控制、大数据随机学习等现代应用中发挥着重要作用。该项目中开发的算法将以更强大、更快的方式提供解决方案,并将公开提供,以使优化和计算数据科学社区受益。本项目所支持的学生将有很好的跨学科研究机会。目前解决结构化优化问题的方法往往需要根据问题结构求解一系列子问题。该项目旨在开发有效的方法和软件,允许不精确地解决其子问题,同时在理论上仍然保证全局收敛,并保持与需要精确解决子问题的相应方法相同或几乎相同的计算复杂性。特别是,研究者将开发(I)可分离凸优化的乘子的不精确交替方向方法的框架,其中子问题被解决到相对于整个问题KKT误差的准确度;(II)复合优化的不精确随机梯度方法,它结合了(加速)邻近梯度法和随机方差减少技术;(三)不准确的主动性-该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inexact alternating direction methods of multipliers for separable convex optimization
- DOI:10.1007/s10589-019-00072-2
- 发表时间:2019-02
- 期刊:
- 影响因子:2.2
- 作者:W. Hager;Hongchao Zhang
- 通讯作者:W. Hager;Hongchao Zhang
Generalized Uniformly Optimal Methods for Nonlinear Programming
- DOI:10.1007/s10915-019-00915-4
- 发表时间:2019-06-01
- 期刊:
- 影响因子:2.5
- 作者:Ghadimi, Saeed;Lan, Guanghui;Zhang, Hongchao
- 通讯作者:Zhang, Hongchao
Convergence rates for an inexact ADMM applied to separable convex optimization
- DOI:10.1007/s10589-020-00221-y
- 发表时间:2020-01
- 期刊:
- 影响因子:2.2
- 作者:W. Hager;Hongchao Zhang
- 通讯作者:W. Hager;Hongchao Zhang
A Derivative-Free Geometric Algorithm for Optimization on a Sphere
- DOI:10.4208/csiam-am.2020-0026
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Yannan Chen
- 通讯作者:Yannan Chen
On the Asymptotic Convergence and Acceleration of Gradient Methods
- DOI:10.1007/s10915-021-01685-8
- 发表时间:2019-08
- 期刊:
- 影响因子:2.5
- 作者:Yakui Huang;Yuhong Dai;Xinwei Liu;Hongchao Zhang
- 通讯作者:Yakui Huang;Yuhong Dai;Xinwei Liu;Hongchao Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongchao Zhang其他文献
Spin-orbit torque efficiency enhancement to tungsten-based SOT-MTJs by interface modification with an ultrathin MgO
通过超薄 MgO 界面改性提高钨基 SOT-MTJ 的自旋轨道扭矩效率
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Shiyang Lu;Xiaobai Ning;Hongchao Zhang;Sixi Zhen;Xiaofei Fan;D. Xiong;Dapeng Zhu;Gefei Wang;Hong;K. Cao;Weisheng Zhao - 通讯作者:
Weisheng Zhao
“Using Fuzzy Multi-Agent Decision Making in Environmentally Conscious Supplier Management”
“在环保供应商管理中使用模糊多代理决策”
- DOI:
10.1016/s0007-8506(07)60607-6 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Hongchao Zhang;Jianzhi Li;M. E. Merchant - 通讯作者:
M. E. Merchant
Structural Characteristics of Vessels in Three Families of Cycadopsida
苏铁纲三个科导管的结构特征
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yu;W. Liao;X. Zhong;L. Wei;Hongchao Zhang;Yuanan Lu - 通讯作者:
Yuanan Lu
A data-driven method to predict future bottlenecks in a remanufacturing system with multi-variant uncertainties
一种数据驱动的方法来预测具有多变量不确定性的再制造系统中的未来瓶颈
- DOI:
10.1007/s11771-022-4906-z - 发表时间:
2022-01 - 期刊:
- 影响因子:4.4
- 作者:
Zheng Xue;Tao Li;Shitong Peng;Chaoyong Zhang;Hongchao Zhang - 通讯作者:
Hongchao Zhang
Energy-avare fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
- DOI:
https://doi.org/10.1007/s11465-019-0560-z - 发表时间:
2019 - 期刊:
- 影响因子:4.5
- 作者:
Jiali Zhao;Shitong Peng;Tao Li;Shengping Lv;Mengyun Li;Hongchao Zhang - 通讯作者:
Hongchao Zhang
Hongchao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongchao Zhang', 18)}}的其他基金
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
- 批准号:
2309549 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Optimization Methods for Nonconvex Structured Optimization
非凸结构化优化的优化方法
- 批准号:
2110722 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Acceleration Techniques for Lower-Order Algorithms in Nonlinear Optimization
非线性优化中低阶算法的加速技术
- 批准号:
1522654 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
The Analysis and Design of Gradient Methods for Large-Scale Nonlinear Optimization and Applications
大规模非线性优化的梯度法分析与设计及应用
- 批准号:
1016204 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
- 批准号:
23K03655 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
- 批准号:
2233897 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Designing Robust Cyber-Physical Systems: Logics, Automata, Optimization, and Heuristic Methods
职业:设计鲁棒的网络物理系统:逻辑、自动机、优化和启发式方法
- 批准号:
2240126 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
- 批准号:
2309549 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Advanced Optimization Methods for The Design of Aluminium Based Battery Enclosures for Electric Vehicles
电动汽车铝基电池外壳设计的高级优化方法
- 批准号:
2891974 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Studentship
CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
- 批准号:
2237628 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Developing subspace methods for constrained optimization problems and their application to machine learning
开发约束优化问题的子空间方法及其在机器学习中的应用
- 批准号:
23H03351 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




