Acceleration Techniques for Lower-Order Algorithms in Nonlinear Optimization

非线性优化中低阶算法的加速技术

基本信息

  • 批准号:
    1522654
  • 负责人:
  • 金额:
    $ 17.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on developing efficient innovative acceleration techniques and their underlying theories for the algorithms in nonlinear optimization. The acceleration techniques and algorithms developed in this project will have broad impact in many areas of computational science, including imaging/signal processing, optimal control, computer vision, petroleum engineering, topology optimization, and electronic structure computations. The algorithms developed in this research will be made publicly available on the web and will be applied in solving various computational problems. In addition, the student involved in this project will have excellent opportunities to participate in interdisciplinary research.The research will include developing subspace techniques for nonlinear conjugate gradient method and accelerated nonlinear conjugate gradient methods with theoretically guaranteed optimal global complexity. A framework of inexact alternating direction method of multipliers (ADMM) will also be developed, in which multiple steps are allowed to solve the subproblem to an adaptive accuracy, while still maintaining global convergence even when the problem has more than two blocks. The project will also study acceleration strategies for gradient based stochastic optimization. In particular, adaptive strategies for choosing sample points and extracting quasi-Newton information based on the obtained stochastic information will be explored. In addition, a novel dual active set approach will be developed for solving smooth large-scale nonlinear optimization. For example, in projection on polyhedra, an algorithm can be developed to approximately identify the active linear constraints, while an asymptotically faster algorithm can be used to compute a high accuracy solution.
该项目的重点是开发有效的创新加速技术及其基础理论的算法在非线性优化。在这个项目中开发的加速技术和算法将在计算科学的许多领域产生广泛的影响,包括成像/信号处理,最优控制,计算机视觉,石油工程,拓扑优化和电子结构计算。在这项研究中开发的算法将在网络上公开提供,并将应用于解决各种计算问题。此外,参与本项目的学生将有很好的机会参与跨学科研究,研究将包括开发非线性共轭梯度法的子空间技术和理论上保证最优全局复杂度的加速非线性共轭梯度法。一个框架的不精确交替方向方法的乘数(ADMM)也将开发,其中多个步骤被允许解决子问题的自适应精度,同时仍然保持全局收敛,即使当问题有两个以上的块。该项目还将研究基于梯度的随机优化的加速策略。特别是,选择样本点和提取拟牛顿信息的基础上获得的随机信息的自适应策略将进行探索。此外,一个新的对偶有效集方法将被开发用于解决光滑大规模非线性优化问题。例如,在多面体上的投影中,可以开发一种算法来近似地识别有效线性约束,而渐进更快的算法可以用于计算高精度解。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inexact alternating direction methods of multipliers for separable convex optimization
A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem
Generalized Uniformly Optimal Methods for Nonlinear Programming
  • DOI:
    10.1007/s10915-019-00915-4
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Ghadimi, Saeed;Lan, Guanghui;Zhang, Hongchao
  • 通讯作者:
    Zhang, Hongchao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongchao Zhang其他文献

Spin-orbit torque efficiency enhancement to tungsten-based SOT-MTJs by interface modification with an ultrathin MgO
通过超薄 MgO 界面改性提高钨基 SOT-MTJ 的自旋轨道扭矩效率
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiyang Lu;Xiaobai Ning;Hongchao Zhang;Sixi Zhen;Xiaofei Fan;D. Xiong;Dapeng Zhu;Gefei Wang;Hong;K. Cao;Weisheng Zhao
  • 通讯作者:
    Weisheng Zhao
“Using Fuzzy Multi-Agent Decision Making in Environmentally Conscious Supplier Management”
“在环保供应商管理中使用模糊多代理决策”
  • DOI:
    10.1016/s0007-8506(07)60607-6
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongchao Zhang;Jianzhi Li;M. E. Merchant
  • 通讯作者:
    M. E. Merchant
Structural Characteristics of Vessels in Three Families of Cycadopsida
苏铁纲三个科导管的结构特征
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu;W. Liao;X. Zhong;L. Wei;Hongchao Zhang;Yuanan Lu
  • 通讯作者:
    Yuanan Lu
A data-driven method to predict future bottlenecks in a remanufacturing system with multi-variant uncertainties
一种数据驱动的方法来预测具有多变量不确定性的再制造系统中的未来瓶颈
  • DOI:
    10.1007/s11771-022-4906-z
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zheng Xue;Tao Li;Shitong Peng;Chaoyong Zhang;Hongchao Zhang
  • 通讯作者:
    Hongchao Zhang
Energy-avare fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
  • DOI:
    https://doi.org/10.1007/s11465-019-0560-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jiali Zhao;Shitong Peng;Tao Li;Shengping Lv;Mengyun Li;Hongchao Zhang
  • 通讯作者:
    Hongchao Zhang

Hongchao Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongchao Zhang', 18)}}的其他基金

Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
  • 批准号:
    2309549
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Optimization Methods for Nonconvex Structured Optimization
非凸结构化优化的优化方法
  • 批准号:
    2110722
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Inexact Optimization Methods for Structured Nonlinear Optimization
结构化非线性优化的不精确优化方法
  • 批准号:
    1819161
  • 财政年份:
    2018
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
The Analysis and Design of Gradient Methods for Large-Scale Nonlinear Optimization and Applications
大规模非线性优化的梯度法分析与设计及应用
  • 批准号:
    1016204
  • 财政年份:
    2010
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Optimisation of multi-rotor wind turbines combined with advanced design techniques to enable lower environmental impacts and reduced cost of energy.
多转子风力涡轮机的优化与先进的设计技术相结合,可降低环境影响并降低能源成本。
  • 批准号:
    2894272
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Studentship
Development of a 3D anatomical database of the human lower limb using novel dissection, digitization, and scanning techniques for the construction of a high fidelity finite element model to simulate n
使用新颖的解剖、数字化和扫描技术开发人体下肢 3D 解剖数据库,以构建高保真度有限元模型来模拟
  • 批准号:
    565027-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
  • 批准号:
    2049127
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Development of short-term intense rainfall prediction techniques using lower-cost radar data assimilation and the application to river discharge prediction
利用低成本雷达数据同化开发短期强降雨预测技术及其在河流流量预测中的应用
  • 批准号:
    18H01673
  • 财政年份:
    2018
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1247081
  • 财政年份:
    2012
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1117427
  • 财政年份:
    2011
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1117426
  • 财政年份:
    2011
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Tri-dimensional structure of lower thermosphere by usingnew observation techniques.
利用新的观测技术研究低层热层的三维结构。
  • 批准号:
    18340152
  • 财政年份:
    2006
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interventional vascular occlusion treatment for varicose veins in lower extremity : in vivo assessment and development of clinical techniques
下肢静脉曲张的介入血管闭塞治疗:体内评估和临床技术的发展
  • 批准号:
    15591306
  • 财政年份:
    2003
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lower and Middle Atmospheric Dynamics Using Interferometric Techniques
使用干涉技术研究中低层大气动力学
  • 批准号:
    9402021
  • 财政年份:
    1995
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了