Optimization Methods for Nonconvex Structured Optimization
非凸结构化优化的优化方法
基本信息
- 批准号:2110722
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will advance fundamental algorithmic theory and software tools for solving optimization problems with wide applications in science, engineering and industry. Specifically, the project will be in the area of structured nonconvex nonlinear optimization, a critical component in many modern applications ranging from signal/image processing, real-time optimal control to stochastic learning. The project aims to develop algorithms with focus on the following features: speed, problem dependence, and ease of use for researchers in both optimization and computational data science community. Students will be involved and will have opportunities for interdisciplinary research. Software will be developed.This project will develop theoretically strong and numerically efficient algorithms as well as the software for solving nonconvex structured optimization. These algorithms will solve the subproblems inexactly with guaranteed global convergence as well as feature an optimal computational complexity when the problem features convexity structure. The algorithms will be based on recent work on proximal and stochastic gradient methods for structured composite minimization, inexact alternating direction multiplier methods (ADMM) for separable convex/nonconvex optimization and active set methods for polyhedral constrained optimization. In addition, second-order techniques for accelerating the convergence will be also explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为解决在科学、工程和工业中广泛应用的优化问题提供基本的算法理论和软件工具。具体地说,该项目将在结构化非凸非线性优化领域,这是从信号/图像处理、实时最优控制到随机学习等许多现代应用中的关键组件。该项目旨在开发专注于以下特征的算法:速度、问题依赖性和易用性,供优化和计算数据科学界的研究人员使用。学生将参与并将有机会进行跨学科研究。将开发软件。该项目将开发理论上强大的和数值高效的算法以及求解非凸结构优化的软件。当问题具有凸性结构时,这些算法将在保证全局收敛的前提下解决不精确的子问题,并具有最优的计算复杂度。这些算法将基于最近关于结构组合极小化的近似法和随机梯度法、可分离凸/非凸优化的不精确交替方向乘子法(ADMM)和多面体约束优化的有效集方法的最新工作。此外,还将探索加速融合的二阶技术。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Asymptotic Convergence and Acceleration of Gradient Methods
- DOI:10.1007/s10915-021-01685-8
- 发表时间:2019-08
- 期刊:
- 影响因子:2.5
- 作者:Yakui Huang;Yuhong Dai;Xinwei Liu;Hongchao Zhang
- 通讯作者:Yakui Huang;Yuhong Dai;Xinwei Liu;Hongchao Zhang
On the acceleration of the Barzilai–Borwein method
论 BarzilaiâªBorwein 方法的加速
- DOI:10.1007/s10589-022-00349-z
- 发表时间:2020-01
- 期刊:
- 影响因子:2.2
- 作者:Yakui Huang;Yu-Hong Dai;Xin-Wei Liu;Hongchao Zhang
- 通讯作者:Hongchao Zhang
An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems
- DOI:10.1007/s10957-022-02152-6
- 发表时间:2022-12
- 期刊:
- 影响因子:1.9
- 作者:Jingyong Tang;Jinchuan Zhou;Hongchao Zhang
- 通讯作者:Jingyong Tang;Jinchuan Zhou;Hongchao Zhang
Unified linear convergence of first-order primal-dual algorithms for saddle point problems
鞍点问题一阶原对偶算法的统一线性收敛
- DOI:10.1007/s11590-021-01832-y
- 发表时间:2022-01
- 期刊:
- 影响因子:1.6
- 作者:Fan Jiang;Zhongming Wu;Xingju Cai;Hongchao Zhang
- 通讯作者:Hongchao Zhang
Golden Ratio Primal-Dual Algorithm with Linesearch
- DOI:10.1137/21m1420319
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xiaokai Chang;Junfeng Yang;Hongchao Zhang
- 通讯作者:Xiaokai Chang;Junfeng Yang;Hongchao Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongchao Zhang其他文献
Spin-orbit torque efficiency enhancement to tungsten-based SOT-MTJs by interface modification with an ultrathin MgO
通过超薄 MgO 界面改性提高钨基 SOT-MTJ 的自旋轨道扭矩效率
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Shiyang Lu;Xiaobai Ning;Hongchao Zhang;Sixi Zhen;Xiaofei Fan;D. Xiong;Dapeng Zhu;Gefei Wang;Hong;K. Cao;Weisheng Zhao - 通讯作者:
Weisheng Zhao
“Using Fuzzy Multi-Agent Decision Making in Environmentally Conscious Supplier Management”
“在环保供应商管理中使用模糊多代理决策”
- DOI:
10.1016/s0007-8506(07)60607-6 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Hongchao Zhang;Jianzhi Li;M. E. Merchant - 通讯作者:
M. E. Merchant
Structural Characteristics of Vessels in Three Families of Cycadopsida
苏铁纲三个科导管的结构特征
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yu;W. Liao;X. Zhong;L. Wei;Hongchao Zhang;Yuanan Lu - 通讯作者:
Yuanan Lu
A data-driven method to predict future bottlenecks in a remanufacturing system with multi-variant uncertainties
一种数据驱动的方法来预测具有多变量不确定性的再制造系统中的未来瓶颈
- DOI:
10.1007/s11771-022-4906-z - 发表时间:
2022-01 - 期刊:
- 影响因子:4.4
- 作者:
Zheng Xue;Tao Li;Shitong Peng;Chaoyong Zhang;Hongchao Zhang - 通讯作者:
Hongchao Zhang
Energy-avare fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
- DOI:
https://doi.org/10.1007/s11465-019-0560-z - 发表时间:
2019 - 期刊:
- 影响因子:4.5
- 作者:
Jiali Zhao;Shitong Peng;Tao Li;Shengping Lv;Mengyun Li;Hongchao Zhang - 通讯作者:
Hongchao Zhang
Hongchao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongchao Zhang', 18)}}的其他基金
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
- 批准号:
2309549 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Inexact Optimization Methods for Structured Nonlinear Optimization
结构化非线性优化的不精确优化方法
- 批准号:
1819161 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Acceleration Techniques for Lower-Order Algorithms in Nonlinear Optimization
非线性优化中低阶算法的加速技术
- 批准号:
1522654 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
The Analysis and Design of Gradient Methods for Large-Scale Nonlinear Optimization and Applications
大规模非线性优化的梯度法分析与设计及应用
- 批准号:
1016204 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:
516700-2018 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effective Algorithms for Structured Nonconvex Optimization Based on First- and Second-Order Methods and Convex Relaxations
基于一阶、二阶方法和凸松弛的结构化非凸优化的有效算法
- 批准号:
2445089 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Studentship
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:
516700-2018 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Doctoral
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Postdoctoral Fellowships
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Postdoctoral Fellowships
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:
516700-2018 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Doctoral
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Towards Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:走向具有可证明和可解释保证的算法
- 批准号:
1704656 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Toward Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:具有可证明和可解释保证的算法
- 批准号:
1704860 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Postdoctoral Fellowships
AF: Small: New classes of optimization methods for nonconvex large scale machine learning models.
AF:小型:非凸大规模机器学习模型的新型优化方法。
- 批准号:
1618717 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant