Collaborative Research: A Tensor-Based Computational Framework for Model Reduction and Structured Matrices

协作研究:基于张量的模型简化和结构化矩阵计算框架

基本信息

  • 批准号:
    1821148
  • 负责人:
  • 金额:
    $ 14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Many tasks in scientific computing involve either data or operators that are inherently multidimensional: for example, a database of gray-scale images constitutes a three-dimensional array when each image is stored in a standard two-dimensional array format. Yet many standard numerical methods treat the data and associated operators as two-dimensional arrays, or matrices. This suggests that additional structure that could be leveraged for computational gain may be going undiscovered and underutilized. Recent research has shown that tensors (multidimensional arrays) and several types of corresponding decomposition methods can be instrumental in revealing latent correlations of both data and operators residing in high-dimensional spaces. Indeed, tensor decompositions can be provably superior to matrix-based counterparts in representation of certain types of data. This research project tackles two important questions: (1) how to uncover latent structure in data and operators using multidimensional tensor factorizations, and (2) how to use these revealed structures to develop a powerful computational framework that can harvest the benefits of this structure. Hands-on teaching material for graduate courses will be developed on randomized matrix methods and tensor decompositions. This teaching material, in the form of Python notebooks, along with the code developed as a part of this project, will be freely available as a software library under an open source license.The investigators aim to answer these questions in the context of two applications in scientific computing of major importance and far-reaching consequences: model reduction, a mathematical framework for reducing the computational cost associated with high-fidelity simulations of complicated physical phenomena, and structured matrix approximation, which is important in applications such as parametric partial differential equations and image deblurring. The work will approach these questions through an entirely new, multidimensional lens with the advantages of providing new computational efficiencies and structure that can only be obtained by moving to a higher-dimensional regime. Two signature features of the project are: (1) design and analysis of structured tensor decompositions that are efficient in terms of computations and memory accesses, by using randomized matrix methods and the algebraic structure of tensor decompositions; and (2) use of tensor models, and a corresponding suite of structured decompositions, to exploit latent multidimensional structure in model reduction and structured matrix approximations. The research is expected to benefit numerous other applications in science and engineering as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学计算中的许多任务涉及固有多维的数据或运算符:例如,当每个图像以标准的二维数组格式存储时,灰度图像的数据库构成三维数组。然而,许多标准的数值方法将数据和相关的运算符视为二维数组或矩阵。这表明,可以利用计算增益的额外结构可能未被发现和利用不足。最近的研究表明,张量(多维数组)和几种类型的相应的分解方法可以有助于揭示数据和高维空间中的操作符之间的潜在相关性。事实上,张量分解在表示某些类型的数据时可以证明优于基于矩阵的对应物。该研究项目解决了两个重要问题:(1)如何使用多维张量因子分解揭示数据和运算符中的潜在结构,以及(2)如何使用这些揭示的结构来开发一个强大的计算框架,可以收获这种结构的好处。实践教学材料的研究生课程将制定随机矩阵方法和张量分解。本教材以Python笔记本的形式提供,沿着作为本项目一部分开发的代码,将作为开源许可证下的软件库免费提供。研究人员的目标是在科学计算中具有重大意义和深远影响的两个应用程序的背景下回答这些问题:模型简化,用于减少与复杂物理现象的高保真模拟相关联的计算成本的数学框架,以及结构化矩阵近似,这在诸如参数偏微分方程和图像去模糊的应用中是重要的。这项工作将通过一个全新的多维透镜来解决这些问题,它的优点是提供了新的计算效率和结构,而这些只有通过向高维区域移动才能获得。该项目的两个标志性特征是:(1)通过使用随机矩阵方法和张量分解的代数结构,设计和分析在计算和内存访问方面有效的结构化张量分解;(2)使用张量模型和相应的结构化分解套件,以利用模型简化和结构化矩阵近似中的潜在多维结构。这项研究预计将有利于许多其他应用在科学和工程以及。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Misha Kilmer其他文献

Misha Kilmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Misha Kilmer', 18)}}的其他基金

Collaborative Research: Innovative Integrated Strategies for Nonlinear Parametric Inversion
合作研究:非线性参数反演的创新综合策略
  • 批准号:
    1217161
  • 财政年份:
    2012
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Multilinear Algebra Computations with Higher-Order Tensors
合作研究:RUI:高阶张量的多线性代数计算
  • 批准号:
    0914957
  • 财政年份:
    2009
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Libraries to Effectively Exploit the Memory Heirarchy
协作研究:调整库以有效利用内存层次结构
  • 批准号:
    0342559
  • 财政年份:
    2004
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2216903
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2217028
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2217086
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2217081
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
  • 批准号:
    2217154
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2217089
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2247309
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了