Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)

合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)

基本信息

  • 批准号:
    2217028
  • 负责人:
  • 金额:
    $ 6.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

High-dimensional data computation or analytics are gaining importance in many domains, such as quantum chemistry/physics, quantum circuit simulation, brain processing, social networks, healthcare and machine/deep learning, to name a few. Tensors, a representation of high-dimensional data, are playing an increasingly critical role, and so are tensor methods. Tensor decompositions or factorizations of low-dimensional data (three to five dimensions) have been extensively studied over the past years from a high-performance computing and also compiler and computer architecture angles for their computational core operations, while tensor networks targeting very high-dimensional data (over ten dimensions) and extracting physically meaningful latent variables are underdeveloped because of their complicated mathematical nature, extremely high computational complexity, and more domain-dependent challenges. The project’s novelties are manifold: 1) memory heterogeneity-aware representations with algorithm and system optimizations, which could be adopted to solve other problems such as irregular applications and sparse numerical methods; 2) hardware-software co-design of specialized, sparse-tensor network-accelerator architectures, that are among the first hardware implementations of sparse-tensor networks. The project’s impacts are 1) advancing state-of-the-art tensor decomposition studies to model true higher-order and sparse data; 2) triggering a closer long-term collaboration ranging from academia to research labs to industry by studying solicitous applications; 3) bringing appropriate educational opportunities.This project proposes Cross-layer cooRdination and Optimization for Scalable and Sparse-Tensor Networks (CROSS) for heterogeneous systems that are equipped with various types of accelerators, such as GPUs, TPUs and FPGAs, as well as heterogeneous memories with dynamic and non-volatile random-access memories (DRAM+NVRAM). This research aims to study the sparsity in widely used tensor networks by introducing constraints, regularization, dictionaries, and/or domain knowledge for better data compression, faster computation, lower memory usage and better interpretability. Besides the sparsity challenges, sparse-tensor networks also suffer from the curse of dimensionality, aggravated data randomness and irregular program and memory access behaviors. This planning project conducts preliminary research that aims to address these challenges from four perspectives: (1) memory heterogeneity-aware representations and data (re-)arrangement, (2) balanced sparse tensor contraction (SpTC) algorithms with smart page arrangement, (3) memoization and intelligent allocation to reduce computational cost, and (4) specialized accelerator architectures for sparse-tensor networks. The optimized sparse tensor networks will encompass efforts from high-performance computing, algorithms, compilers, computer architecture and performance modeling and will be tested under multiple application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维数据计算或分析在许多领域越来越重要,例如量子化学/物理、量子电路模拟、大脑处理、社交网络、医疗保健和机器/深度学习等等。张量是高维数据的一种表示形式,它扮演着越来越重要的角色,张量方法也是如此。在过去的几年中,从高性能计算以及编译器和计算机体系结构的角度对低维数据(三到五维)的张量分解或因子分解进行了广泛的研究,以实现其计算核心操作,而针对非常高维数据(超过十维)和提取物理上有意义的潜在变量的张量网络由于其复杂的数学性质而不发达。极高的计算复杂度,以及更多领域相关的挑战。该项目的新颖之处在于:1)基于算法和系统优化的内存异构感知表示,可用于解决不规则应用和稀疏数值方法等其他问题;2)专门的、稀疏张量网络加速器架构的软硬件协同设计,这是稀疏张量网络的首批硬件实现之一。该项目的影响是1)推进最先进的张量分解研究,以模拟真正的高阶和稀疏数据;2)通过研究热心的应用程序,引发从学术界到研究实验室到工业界的更紧密的长期合作;3)带来适当的教育机会。本项目提出了跨层协调和优化可扩展和稀疏张量网络(CROSS)的异构系统,配备各种类型的加速器,如gpu, tpu和fpga,以及具有动态和非易失性随机存取存储器(DRAM+NVRAM)的异构存储器。本研究旨在通过引入约束、正则化、字典和/或领域知识来研究广泛使用的张量网络的稀疏性,以实现更好的数据压缩、更快的计算、更低的内存使用和更好的可解释性。除了稀疏性方面的挑战外,稀疏张量网络还面临着维数诅咒、数据随机性加剧、程序和内存访问行为不规范等问题。本规划项目开展了初步研究,旨在从四个方面解决这些挑战:(1)内存异构感知表示和数据(重新)排列;(2)具有智能页面排列的平衡稀疏张量收缩(SpTC)算法;(3)记忆和智能分配以降低计算成本;(4)用于稀疏张量网络的专用加速器架构。优化的稀疏张量网络将包括高性能计算、算法、编译器、计算机体系结构和性能建模方面的努力,并将在多种应用场景下进行测试。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lizhong Chen其他文献

Combined liver and kidney transplantation in Guangzhou, China.
中国广州进行肝肾联合移植。
Kidney transplantation from living related donors aged more than 60 years: a single center experience
60 岁以上活体亲属捐献者的肾移植:单中心经验
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yifu Li;Jun Li;Q. Fu;Lizhong Chen;J. Fei;S. Deng;J. Qiu;Guodong Chen;Gang Huang;Changxi Wang
  • 通讯作者:
    Changxi Wang
On Trade-off Between Static and Dynamic Power Consumption in NoC Power Gating
NoC功率门控中静态与动态功耗的权衡
Maximizing the performance of NoC-based MPSoCs under total power and power density constraints
在总功率和功率密度限制下最大限度地提高基于 NoC 的 MPSoC 的性能
Clinical and Pathologic Feature of Patients With Early Versus Late Active Antibody-Mediated Rejection After Kidney Transplantation: A Single-Center Experience
肾移植后早期与晚期活性抗体介导的排斥反应患者的临床和病理特征:单中心经验
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Zixuan Wu;Longhui Qiu;Chang Wang;Xiaomian Liu;Qihao Li;Shuangjin Yu;Yuan Yue;Jie Li;Wutao Chen;Jiajian Lai;Lizhong Chen;Changxi Wang;Guodong Chen
  • 通讯作者:
    Guodong Chen

Lizhong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lizhong Chen', 18)}}的其他基金

Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Architecture Innovations for Enabling Simultaneous Translation at the Edge
合作研究:SHF:小型:支持边缘同步翻译的架构创新
  • 批准号:
    2223483
  • 财政年份:
    2022
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
CAREER: Advancing On-chip Network Architecture for GPUs
职业:推进 GPU 片上网络架构
  • 批准号:
    1750047
  • 财政年份:
    2018
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Design of Many-core NoCs for the Dark Silicon Era
SHF:小型:协作研究:暗硅时代的多核 NoC 设计
  • 批准号:
    1619456
  • 财政年份:
    2016
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
CRII: SHF: Investigation of Effective On-chip Network Designs for GPUs
CRII:SHF:有效的 GPU 片上网络设计研究
  • 批准号:
    1566637
  • 财政年份:
    2016
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了