CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees

CDS

基本信息

  • 批准号:
    1821157
  • 负责人:
  • 金额:
    $ 15.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

We now live in the era of data deluge. The sheer volume of the data to be processed, together with the growing complexity of statistical models and the increasingly distributed nature of the data sources, creates new challenges to modern statistics theory. Standard machine learning methods are no longer able to accommodate the computational requirements. They need to be re-designed or adapted, which calls for a new generation of design and theory of scalable learning algorithms for massive data. This project aims to provide a collection of state-of-the-art nonparametric learning tools for big data analysis, which can be directly used by scientists and practitioners and have beneficial impacts on various fields such as biomedicine, health-care, defense and security, and information technology. The deliverables of this project include easy-to-use software packages that will be thoroughly evaluated using a range of application examples. They will directly help scientists to explore and analyze complex data sets. Due to storage and computational bottlenecks, traditional statistical inferential procedures originally designed for a single machine are no longer applicable to modern large datasets. This project aims to design new scalable learning algorithms of wide-ranging nonparametric models for data that are distributed across a large number of multi-core computational nodes, or in a fashion of random sketching if only a single machine is available. The computational limits of these new algorithms will be examined from a statistical perspective. For example, in the divide-and-conquer setup, the number of deployed machines can be viewed as a simple proxy for computing cost. The project aims to establish a sharp upper bound for this number: when the number is below this bound, statistical optimality (in terms of nonparametric estimation or testing) is achievable; otherwise, statistical optimality becomes impossible. Related questions will also be addressed in the randomized sketching method in terms of the minimal number of random projections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们现在生活在数据泛滥的时代。要处理的数据量之大,加上统计模型的日益复杂和数据来源日益分散的性质,给现代统计理论带来了新的挑战。标准的机器学习方法不再能够适应计算要求。它们需要重新设计或调整,这就需要针对海量数据的可伸缩学习算法的新一代设计和理论。该项目旨在为大数据分析提供一系列最先进的非参数学习工具,可供科学家和从业者直接使用,并对生物医学、医疗保健、国防与安全、信息技术等多个领域产生有益影响。该项目的可交付成果包括易于使用的软件包,这些软件包将通过一系列应用程序实例进行全面评估。它们将直接帮助科学家探索和分析复杂的数据集。由于存储和计算瓶颈,最初为单台机器设计的传统统计推理程序不再适用于现代大数据集。该项目旨在为分布在大量多核计算节点上的数据设计新的可扩展的非参数模型的学习算法,或者如果只有一台机器可用,则以随机草图的方式进行。这些新算法的计算极限将从统计学的角度进行检验。例如,在分而治之的设置中,可以将部署的机器数量视为计算成本的简单代理。该项目旨在为这个数字建立一个明确的上限:当这个数字低于这个上限时,就可以实现统计最优(就非参数估计或检验而言);否则,统计最优就变得不可能了。相关问题也将在随机草图方法中以随机项目的最小数量来解决。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Generalized Cross-Validation for Divide-and-Conquer Kernel Ridge Regression and Its Asymptotic Optimality
Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data
  • DOI:
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ganggang Xu;Zuofeng Shang;Guang Cheng
  • 通讯作者:
    Ganggang Xu;Zuofeng Shang;Guang Cheng
Estimation of the mean function of functional data via deep neural networks
通过深度神经网络估计功能数据的均值函数
  • DOI:
    10.1002/sta4.393
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wang, Shuoyang;Cao, Guanqun;Shang, Zuofeng;for the Alzheimer's Disease Neuroimaging Initiative
  • 通讯作者:
    for the Alzheimer's Disease Neuroimaging Initiative
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zuofeng Shang其他文献

Statistica Sinica Preprint No: SS-2022-0057
《统计》预印本编号:SS-2022-0057
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuoyang Wang;Zuofeng Shang;Guanqun Cao;Jun Liu
  • 通讯作者:
    Jun Liu
Empirical likelihood test for community structure in networks
网络中社区结构的经验似然检验
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingao Yuan;Sharmin Hossain;Zuofeng Shang
  • 通讯作者:
    Zuofeng Shang
Testing community structure for hypergraphs
测试超图的社区结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Mingao Yuan;Ruiqi Liu;Yang Feng;Zuofeng Shang
  • 通讯作者:
    Zuofeng Shang
Sharp detection boundaries on testing dense subhypergraph
测试密集子超图时的清晰检测边界
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Mingao Yuan;Zuofeng Shang
  • 通讯作者:
    Zuofeng Shang
A Fast Non-Linear Coupled Tensor Completion Algorithm for Financial Data Integration and Imputation
一种用于金融数据集成和插补的快速非线性耦合张量完成算法

Zuofeng Shang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zuofeng Shang', 18)}}的其他基金

Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
  • 批准号:
    2005746
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
  • 批准号:
    2005779
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
  • 批准号:
    1764280
  • 财政年份:
    2017
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
  • 批准号:
    1712919
  • 财政年份:
    2017
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了