SPX: Integrating Persistent Memory in the Cloud

SPX:在云中集成持久内存

基本信息

  • 批准号:
    1822965
  • 负责人:
  • 金额:
    $ 96.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The massive volume of data and high computing intensity of large-scale applications in the cloud require thousands of machines in big data centers. In addition, there is an increasing demand for faster, energy-efficient, and scalable performance from new data-intensive applications. Unfortunately, as the technology scaling slows down, the semiconductor industry has been facing a major challenge in providing better performance and reducing the power consumption while processing large datasets. To provide better performance and lower costs for cloud applications that manipulate massive data with tight latency constraints, service providers are moving towards in-memory frameworks to store the working data. By exploring the roles of emerging memory technologies, this research project has the potential to improve cloud computing performance. The ideas developed in this research will bridge the gap between architecture, systems, and software engineering community and will enable system support and automated tools for adapting applications in the persistent cloud. The project will eventually enable a holistic "persistent cloud system" such that the cloud applications can be adapted transparently without significant programmers' effort.The goal of this work is to enable a persistent cloud system in a holistic manner across the system stack such that the persistent cloud applications can be adapted in the systems without significant programmers? effort. In order to design a persistent cloud system, this work is to provide full stack support from the applications to hardware through three major research directions that need to be addressed to design a full-stack persistent cloud system, (i) lightweight storage layer support for persistent memory systems, (ii) data monitoring and placement based on application characteristics and trade-offs in NVM, and (iii) automated persistency support at the application-level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算中大规模应用的海量数据和高计算强度要求大数据中心有成千上万台机器。此外,新的数据密集型应用程序对更快、节能和可扩展性能的需求也越来越大。不幸的是,随着技术扩展速度的放缓,半导体行业在处理大型数据集的同时提供更好的性能和降低功耗方面面临着重大挑战。 为了为在严格的延迟约束下操作大量数据的云应用程序提供更好的性能和更低的成本,服务提供商正在转向内存框架来存储工作数据。 通过探索新兴内存技术的作用,该研究项目有可能提高云计算的性能。在这项研究中开发的想法将弥合架构,系统和软件工程社区之间的差距,并将使系统支持和自动化工具,以适应应用程序在持久云。该项目最终将实现一个整体的“持久云系统”,这样云应用程序就可以透明地适应,而不需要大量的程序员的努力。这项工作的目标是在整个系统堆栈中以整体的方式实现一个持久云系统,这样持久云应用程序就可以在系统中适应,而不需要大量的程序员。努力为了设计一个持久云系统,本文的工作是通过三个主要的研究方向提供从应用到硬件的全栈支持,这三个主要的研究方向是设计一个全栈持久云系统需要解决的问题:(i)持久存储系统的轻量级存储层支持,(ii)基于应用特性和NVM中的权衡的数据监控和放置,和(iii)应用级的自动化持久性支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samira Khan其他文献

Smart Ways to Use Smartphones in Adolescent Mental Health Treatment
使用智能手机进行青少年心理健康治疗的明智方法
vPIM: Efficient Virtual Address Translation for Scalable Processing-in-Memory Architectures
vPIM:用于可扩展内存处理架构的高效虚拟地址转换
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amel Fatima;Sihang Liu;Korakit Seemakhupt;Rachata Ausavarungnirun;Samira Khan
  • 通讯作者:
    Samira Khan
A Study on Forecasting of Daily Deaths using Statistical Models and Consciousness of Students towards COVID-19 in Kashmir
使用统计模型预测克什米尔每日死亡人数和学生对 COVID-19 的意识的研究
6.57 Smart Ways to Use Smartphones in Mental Health Treatment
  • DOI:
    10.1016/j.jaac.2018.09.418
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samira Khan
  • 通讯作者:
    Samira Khan
Advanced Proteomics and Cluster Analysis for Identifying Novel Obstructive Sleep Apnea Subtypes before and after CPAP Therapy.
用于识别 CPAP 治疗前后新型阻塞性睡眠呼吸暂停亚型的高级蛋白质组学和聚类分析。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    V. Kundel;O. Cohen;Samira Khan;Manishkumar Patel;S. Kim;J. Kovacic;M. Suárez;N. Shah
  • 通讯作者:
    N. Shah

Samira Khan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samira Khan', 18)}}的其他基金

CAREER:In-Network Computation Meets Data Persistence
职业:网内计算遇见数据持久性
  • 批准号:
    2046066
  • 财政年份:
    2021
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Continuing Grant
Student Travel Support for the 3rd Career Workshop for Women and Minorities in Computer Architecture (CWWMCA)
第三届计算机架构领域女性和少数族裔职业研讨会 (CWWMCA) 的学生旅行支持
  • 批准号:
    1747933
  • 财政年份:
    2017
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant
CRII: SHF: System-Level Detection, Modeling, and Mitigation of DRAM Failures to Enable Efficient Scaling of DRAM Memory
CRII:SHF:系统级 DRAM 故障检测、建模和缓解,以实现 DRAM 内存的高效扩展
  • 批准号:
    1566483
  • 财政年份:
    2016
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2nd Career Workshop for Women and Minorities in Computer Architecture
第二届计算机架构领域女性和少数族裔职业研讨会的学生旅行支持
  • 批准号:
    1613316
  • 财政年份:
    2015
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant

相似海外基金

Challenging Health Outcomes/Integrating Care Environments Ph3: A Community Consortium to Tackle Health Disparity for People Living with Mental Illness
挑战健康成果/整合护理环境第三阶段:解决精神疾病患者健康差距的社区联盟
  • 批准号:
    AH/Z505420/1
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Research Grant
Evaluating the effectiveness and sustainability of integrating helminth control with seasonal malaria chemoprevention in West African children
评估西非儿童蠕虫控制与季节性疟疾化学预防相结合的有效性和可持续性
  • 批准号:
    MR/X023133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Fellowship
Integrating metabolic signals through FOXO transcriptional complexes.
通过 FOXO 转录复合物整合代谢信号。
  • 批准号:
    BB/X000265/1
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Research Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
  • 批准号:
    2337784
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Continuing Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Standard Grant
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
  • 批准号:
    2327030
  • 财政年份:
    2024
  • 资助金额:
    $ 96.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了