SPX: Collaborative Research: Global Address Programming with Accelerators
SPX:协作研究:使用加速器进行全局地址编程
基本信息
- 批准号:1823034
- 负责人:
- 金额:$ 46.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale computing today is dominated by parallel computing, where a large task is divided into many smaller tasks and those smaller tasks run at the same time. Traditionally each of those tasks run independently up to a common stopping point, then they halt, exchange information, and continue. This global stop-and-communicate step is quite expensive. This project instead pursues a different approach, where individual tasks directly communicate with other tasks asynchronously, without having to wait for a global stopping point. This approach is likely to yield better performance on large-scale computing tasks, specifically on what is becoming the dominant large-scale machine, a heterogeneous machine with many CPUs and othermany-core processors. The project will deliver a set of high-performance, open-source data structures and algorithm implementations to support irregular patterns of communication, notably those that arise in biology, graph analytics, and sparse linear algebra for machine learning. These will not only be directly useful for end users but also demonstrate how to design and engineer primitives for accelerator-equipped distributed-memory machines. The project also engages application developers (both in our groups and externally) to make the outcomes broadly useful.The project will develop a programming environment for accelerator-based HPC systems that integrates accelerators into a Partitioned Global Address Space (PGAS) model, which will allow direct communication between GPUs in a manner that is well suited to both applications and the underlying hardware. Specifically, GPU programming will be integrated with the UPC++ PGAS programming model ("GPUPC++"). The project will thus advance the state of the art in algorithms, programming models, and low-level support for the heterogeneous large-scale computers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的大规模计算是由并行计算主导的,在并行计算中,一个大任务被分成许多小任务,这些小任务同时运行。传统上,这些任务中的每一个都独立运行到一个共同的停止点,然后它们停止、交换信息并继续。这个全局停止并通信的步骤非常昂贵。这个项目采用了一种不同的方法,其中单个任务直接与其他任务异步通信,而不必等待全局停止点。这种方法可能会在大规模计算任务上产生更好的性能,特别是在正在成为主流的大型机器上,即具有许多cpu和多核处理器的异构机器。该项目将提供一组高性能、开源的数据结构和算法实现,以支持不规则的通信模式,特别是那些出现在生物学、图分析和机器学习的稀疏线性代数中的模式。这些不仅对最终用户直接有用,而且还演示了如何为配备加速器的分布式内存机器设计和设计原语。该项目还需要应用程序开发人员(包括我们组内的和外部的)来使结果广泛有用。该项目将为基于加速器的HPC系统开发一个编程环境,该环境将加速器集成到一个分区全局地址空间(PGAS)模型中,该模型将允许gpu之间以一种非常适合应用程序和底层硬件的方式进行直接通信。具体来说,GPU编程将与upc++ PGAS编程模型(“gpupc++”)集成。因此,该项目将推进算法、编程模型和对异构大型计算机的低级支持方面的技术水平。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The parallelism motifs of genomic data analysis
- DOI:10.1098/rsta.2019.0394
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:K. Yelick;A. Buluç;M. Awan;A. Azad;Benjamin Brock;R. Egan;S. Ekanayake;Marquita Ellis;E. Georganas;Giulia Guidi;S. Hofmeyr;Oguz Selvitopi;Cristina Teodoropol;L. Oliker
- 通讯作者:K. Yelick;A. Buluç;M. Awan;A. Azad;Benjamin Brock;R. Egan;S. Ekanayake;Marquita Ellis;E. Georganas;Giulia Guidi;S. Hofmeyr;Oguz Selvitopi;Cristina Teodoropol;L. Oliker
ADEPT: a domain independent sequence alignment strategy for gpu architectures
- DOI:10.1186/s12859-020-03720-1
- 发表时间:2020-09-15
- 期刊:
- 影响因子:3
- 作者:Awan, Muaaz G.;Deslippe, Jack;Yelick, Katherine
- 通讯作者:Yelick, Katherine
Considerations for a Distributed GraphBLAS API
分布式 GraphBLAS API 的注意事项
- DOI:10.1109/ipdpsw50202.2020.00048
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Brock, Benjamin;Buluc, Aydin;Mattson, Timothy G.;McMillan, Scott;Moreira, Jose E.;Pearce, Roger;Selvitopi, Oguz;Steil, Trevor
- 通讯作者:Steil, Trevor
Asynchrony versus bulk-synchrony for a generalized N-body problem from genomics
- DOI:10.1145/3437801.3441580
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Marquita Ellis;A. Buluç;K. Yelick
- 通讯作者:Marquita Ellis;A. Buluç;K. Yelick
GraphBLAS: C++ Iterators for Sparse Matrices
GraphBLAS:稀疏矩阵的 C 迭代器
- DOI:10.1109/ipdpsw55747.2022.00053
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Brock, Benjamin;McMillan, Scott;Buluc, Aydin;Mattson, Timothy G.;Moreira, Jose E.
- 通讯作者:Moreira, Jose E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Yelick其他文献
Katherine Yelick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Yelick', 18)}}的其他基金
Student Travel Support for the 24th International Conference on Parallel Architectures and Compilation Techniques (PACT); San Francisco, CA; October 18 - 21, 2015
第 24 届国际并行架构和编译技术会议 (PACT) 的学生差旅支持;
- 批准号:
1546951 - 财政年份:2015
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Simulations And Analysis of Cosmic Microwave Background Polarization Data At The Petascale And Beyond
千万亿级及以上宇宙微波背景偏振数据的模拟和分析
- 批准号:
0905099 - 财政年份:2009
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: CRI: IAD: Development of a Research Infrastructure for the Multithreaded Computing Community Using the Cray Eldorado Platform
协作研究:CRI:IAD:使用 Cray Eldorado 平台为多线程计算社区开发研究基础设施
- 批准号:
0709254 - 财政年份:2007
- 资助金额:
$ 46.5万 - 项目类别:
Continuing Grant
Automatic Performance Tuning of Numerical Kernels
数值内核的自动性能调优
- 批准号:
0090127 - 财政年份:2001
- 资助金额:
$ 46.5万 - 项目类别:
Continuing Grant
Automated Perturbation Theory for Hamiltonian Systems
哈密顿系统的自动摄动理论
- 批准号:
9712410 - 财政年份:1997
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Software Systems for Irregular Application on Scalable Multiprocessors
用于可扩展多处理器上不规则应用的软件系统
- 批准号:
9210260 - 财政年份:1992
- 资助金额:
$ 46.5万 - 项目类别:
Continuing Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant














{{item.name}}会员




