Automated Perturbation Theory for Hamiltonian Systems
哈密顿系统的自动摄动理论
基本信息
- 批准号:9712410
- 负责人:
- 金额:$ 9.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many non-linear problems in dynamics fall under the general theory of perturbations. Important examples include the attitude and orbital stability of satellites, the identification of molecules by spectroscopy, and the stability of beams in accelerators. These multidimensional systems are not integrable, but perturbation methods can be applied to transform them to approximations with fewer degrees of freedom. Most of the time, such approximations are performed by elementary procedures with no mathematical sophistication, with the result that the calculations become enormous. The goal of this project is to build a toolbox for solving dynamical systems, specifically targeted to perturbation methods for Hamiltonian systems. The toolbox will be flexible enough to treat efficiently different classes of systems will allow researchers to explore new problems, experiment with new transformations, and verify published results. As a demonstration of usefulness, flexibility and efficiency, an analytical theory will be developed for lunar satellites at low altitude. Planners for lunar survey missions, such as the Clementine mission in 1994, seek orbits appropriate for reconnaissance. They need to predict the long-term behavior of a satellite in order to select an orbit with low eccentricity (for constant sensor altitude) and fixed pericenter (to economize fuel in maneuvers). At present, orbit selection is largely a matter of guesswork. Using crude approximations, planners choose possible orbits which are then checked by numerical integration. Without a global view of the long-term dynamics, mission planners can only hope they sampled wisely. Generating ``maps'' of long-term phase space from an analytical model will remove the guesswork. Such maps have already proved useful in mission planning for earth satellites.
动力学中的许多非线性问题都属于一般摄动理论的范畴。重要的例子包括卫星的姿态和轨道稳定性,用光谱学识别分子,以及加速器中光束的稳定性。这些多维系统是不可积的,但可以应用摄动方法将它们转换为具有更少自由度的近似。大多数情况下,这种近似是通过没有复杂数学知识的基本程序来实现的,其结果是计算变得非常庞大。这个项目的目标是建立一个求解动力系统的工具箱,特别是针对哈密顿系统的摄动方法。工具箱将足够灵活,可以有效地处理不同类型的系统,这将允许研究人员探索新的问题,实验新的转换,并验证已发表的结果。为了证明有用性、灵活性和效率,将为低空月球卫星发展一种分析理论。月球勘测任务的规划者,例如1994年的克莱门汀号任务,寻找适合侦察的轨道。他们需要预测卫星的长期行为,以便选择一个低偏心(为了保持传感器高度不变)和固定中心(为了节省机动燃料)的轨道。目前,轨道选择在很大程度上是一种猜测。规划者使用粗略的近似,选择可能的轨道,然后用数值积分来检验。如果没有长期动态的全球视角,任务规划者只能希望他们的抽样是明智的。从分析模型生成长期相位空间的“地图”将消除猜测。这种地图已被证明对地球卫星的任务规划很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Yelick其他文献
Katherine Yelick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Yelick', 18)}}的其他基金
SPX: Collaborative Research: Global Address Programming with Accelerators
SPX:协作研究:使用加速器进行全局地址编程
- 批准号:
1823034 - 财政年份:2018
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Student Travel Support for the 24th International Conference on Parallel Architectures and Compilation Techniques (PACT); San Francisco, CA; October 18 - 21, 2015
第 24 届国际并行架构和编译技术会议 (PACT) 的学生差旅支持;
- 批准号:
1546951 - 财政年份:2015
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Simulations And Analysis of Cosmic Microwave Background Polarization Data At The Petascale And Beyond
千万亿级及以上宇宙微波背景偏振数据的模拟和分析
- 批准号:
0905099 - 财政年份:2009
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Collaborative Research: CRI: IAD: Development of a Research Infrastructure for the Multithreaded Computing Community Using the Cray Eldorado Platform
协作研究:CRI:IAD:使用 Cray Eldorado 平台为多线程计算社区开发研究基础设施
- 批准号:
0709254 - 财政年份:2007
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
Automatic Performance Tuning of Numerical Kernels
数值内核的自动性能调优
- 批准号:
0090127 - 财政年份:2001
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
Software Systems for Irregular Application on Scalable Multiprocessors
用于可扩展多处理器上不规则应用的软件系统
- 批准号:
9210260 - 财政年份:1992
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
相似海外基金
Fundamental Fields, Black Holes and Perturbation Theory
基本场、黑洞和微扰理论
- 批准号:
2887309 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Studentship
Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
- 批准号:
2311252 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
- 批准号:
23K03420 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
- 批准号:
2888423 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Studentship
Gravitational Wave Modeling Using Time-Domain Black Hole Perturbation Theory
使用时域黑洞微扰理论进行引力波建模
- 批准号:
2307236 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
A mathematical approach to black hole perturbation theory
黑洞微扰理论的数学方法
- 批准号:
22K03641 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic Perturbation Theory for Machine Learning
机器学习的随机扰动理论
- 批准号:
EP/W00383X/1 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
Research Grant
The WKB method via homological perturbation theory
基于同调微扰理论的 WKB 方法
- 批准号:
572315-2022 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
University Undergraduate Student Research Awards
RUI: Exciton-Phonon Interactions in Solids based on Time-Dependent Density Functional Perturbation Theory
RUI:基于瞬态密度泛函微扰理论的固体中激子-声子相互作用
- 批准号:
2105918 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
Excited State Properties of Semiconductions and Insulators from Many Body Perturbation Theory
来自多体摄动理论的半导体和绝缘体的激发态性质
- 批准号:
2748355 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
Studentship














{{item.name}}会员




