SPX: Collaborative Research: Enabling Efficient Computer Architectural and System Support for Next-Generation Network Function Virtualization
SPX:协作研究:为下一代网络功能虚拟化提供高效的计算机架构和系统支持
基本信息
- 批准号:1822989
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network Function Virtualization (NFV) has been widely adopted by telecommunication and internet service providers for greater performance, flexibility, and adaptability, and is treated as the most promising technology for the upcoming fifth generation (5G) wireless networks. However, ensuring that consolidated next-generation NFV workloads can efficiently run on current, commercially available servers and systems while maintaining optimal server/network utilization remains a challenge. The main reason is that existing solutions only serve as layer-specific optimizations. Due to the loose-coupled optimizations across the system and architectural layers, these solutions lack the holistic and synergistic view to guarantee the performance, resilience, and elasticity posed by the features of 5G NFV. This project aims to optimize the efficiency of consolidation of 5G NFV on commercially available server architectures and systems. The contributions of this project are: (1) rethinking the mechanisms employed in various layers of current NFV deployment and optimization, and (2) re-architecting the abstractions between the layers and applications. The impacts of this project will open the door for a new class of efficient scalable computing platforms for next-generation NFV in the 5G era. This project will also contribute to society through engaging under-represented groups, research infrastructure/tools/benchmarks dissemination for education and training, and technology transfer to industries.This project proposes to develop: system-wide profiling tools and an automatic, architectural statistics-aware NFV workloads orchestration and benchmarking framework; new techniques that allow NFV applications to leverage virtualized graphic processing units (GPU), and that improve the scheduling of data movement between GPU and smart network interface cards (NICs); new abstractions that allow NFV applications and building blocks to leverage emerging offloading techniques (e.g. smart NIC and GPU remote direct memory access) and a novel architecture to improve the consolidation efficiency, parallelism, and scalability; and novel algorithms and abstractions for operating systems and accelerators to improve the thread, cache and memory management and cross-layer parallelism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络功能虚拟化(Network Function Virtualization,NFV)已被电信和互联网服务提供商广泛采用,以获得更高的性能、灵活性和适应性,并被视为即将到来的第五代(5G)无线网络最有前途的技术。然而,确保整合的下一代NFV工作负载可以在当前商用服务器和系统上高效运行,同时保持最佳的服务器/网络利用率仍然是一个挑战。主要原因是现有的解决方案只能作为特定于层的优化。由于系统和架构层之间的松耦合优化,这些解决方案缺乏整体和协同视图,无法保证5G NFV功能所带来的性能、弹性和弹性。该项目旨在优化商用服务器架构和系统上5G NFV的整合效率。该项目的贡献是:(1)重新思考当前NFV部署和优化的各个层中采用的机制,以及(2)重新架构层和应用程序之间的抽象。该项目的影响将为5G时代下一代NFV的新型高效可扩展计算平台打开大门。该项目还将通过让代表性不足的群体参与、为教育和培训传播研究基础设施/工具/基准以及向行业转让技术来为社会做出贡献。新技术,允许NFV应用程序利用虚拟化图形处理单元(GPU),并改进GPU和智能网络接口卡(GPU)之间的数据移动调度;新的抽象,允许NFV应用程序和构建块利用新兴的卸载技术(例如智能NIC和GPU远程直接存储器访问)和新颖的架构以提高整合效率、并行性和可扩展性;以及用于操作系统和加速器的新颖算法和抽象来改进线程,高速缓存和内存管理以及跨该奖项反映了NSF的法定使命,并被认为是值得通过评估使用基金会的智力价值和更广泛的支持影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing and Orchestrating NFV-Ready Servers for Efficient Edge Data Processing
- DOI:10.1145/3326285.3329057
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Lu Zhang;Chao Li;Pengyu Wang;Yunxin Liu;Yang Hu;Quan Chen;M. Guo
- 通讯作者:Lu Zhang;Chao Li;Pengyu Wang;Yunxin Liu;Yang Hu;Quan Chen;M. Guo
5G NFV RAN Network Slicing Bench: The 5th-Generation Network Function Virtualization Radio Access Network Slicing Benchmarks
5G NFV RAN网络切片基准:第五代网络功能虚拟化无线接入网切片基准
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jianda Wang, Yang Hu
- 通讯作者:Jianda Wang, Yang Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Li其他文献
Evaluating liver function and the impact of immune checkpoint inhibitors in the prognosis of hepatocellular carcinoma patients: A systemic review and meta-analysis
评估肝功能和免疫检查点抑制剂对肝细胞癌患者预后的影响:系统评价和荟萃分析
- DOI:
10.1016/j.intimp.2022.109519 - 发表时间:
2022 - 期刊:
- 影响因子:5.6
- 作者:
Bao-Wen Tian;Lun-Jie Yan;Zi-Niu Ding;Hui Liu;Cheng-Long Han;Guang-Xiao Meng;Jun-Shuai Xue;Zhao-Ru Dong;Yu-Chuan Yan;Jian-Guo Hong;Zhi-Qiang Chen;Dong-Xu Wang;Tao Li - 通讯作者:
Tao Li
Phosphorylation of GluN2B subunits of N-methyl-d-aspartate receptors in the frontal association cortex involved in morphine-induced conditioned place preference in mice
额叶联合皮层 N-甲基-d-天冬氨酸受体 GluN2B 亚基的磷酸化参与吗啡诱导的小鼠条件性位置偏好
- DOI:
10.1016/j.neulet.2020.135470 - 发表时间:
2020-11 - 期刊:
- 影响因子:2.5
- 作者:
Gang Chen;Wei Han;Axiang Li;Jing Wang;Jing Xiao;Xin Huang;Khosa Asif Nazir;Qing Shang;Hongyan Qian;Chuchu Qiao;Xinshe Liu;Tao Li - 通讯作者:
Tao Li
A novel negative selection algorithm based on subspace clustering
一种基于子空间聚类的负选择算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Liu ZhengJun;Wen Chen;Tao Li;Tao Yang - 通讯作者:
Tao Yang
Normal Dispersion Fiber-based Nonlinear Pulse Compressor for Generating 2-μm Watt-scale, ~100-MHz, Few-cycle Laser Pulse
基于正色散光纤的非线性脉冲压缩器,用于生成 2μm 瓦特级、~100MHz、少周期激光脉冲
- DOI:
10.1109/acp55869.2022.10088930 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
T. Feng;Jingcheng Shang;Shengzhi Zhao;Yizhou Liu;Kejian Yang;C. Wang;Tao Li - 通讯作者:
Tao Li
Author-topic evolution analysis using three-way non-negative Paratucker
使用三向非负 Paratucker 进行作者主题演化分析
- DOI:
10.1145/1390334.1390521 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wei Peng;Tao Li - 通讯作者:
Tao Li
Tao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Li', 18)}}的其他基金
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2422863 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2245760 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
- 批准号:
2328828 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323117 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: Rational design of Ni/Ga intermetallic compounds for efficient light alkanes conversion through ammonia reforming
合作研究:合理设计Ni/Ga金属间化合物,通过氨重整实现轻质烷烃的高效转化
- 批准号:
2210868 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
- 批准号:
2208972 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
- 批准号:
2120559 - 财政年份:2021
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: Design of a Novel Photo-Thermo-Catalyst for Enhanced Activity and Stability of Dry Reforming of Methane
合作研究:设计新型光热催化剂以增强甲烷干重整的活性和稳定性
- 批准号:
1924574 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Enhancing Mobile VR/AR User Experience: An Integrated Architecture-System Approach
SHF:媒介:协作研究:增强移动 VR/AR 用户体验:集成架构系统方法
- 批准号:
1900713 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Heegaard Splitting and Topology of 3-Manifolds
三流形的 Heegaard 分裂和拓扑
- 批准号:
1906235 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Standard Grant