Energy-Efficient Chip-Scale Sensing of CrowdedWide Spectrum

密集宽光谱的节能芯片级传感

基本信息

  • 批准号:
    1824320
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The ever-increasing demand for wireless applications has resulted in an unprecedented radio frequency (RF) spectrum shortage, yet access to spectrum will be an increasingly important foundation for our nation's economic growth and technological leadership. A dynamically shared spectrum access scheme is expected to significantly boost the spectrum efficiency. The key enabling technology for the shared spectrum access is a real-time sensor that can monitor a very wide and crowded spectrum. Unfortunately, real-time access to a wide and crowded spectrum using existing technologies requires extremely power-hungry high-speed analog-to-digital converters and hence is not practical for energy-constrained mobile applications. This project will develop a new generation of energy-efficient and low-cost spectrum sensing systems by fusing recent innovations in RF acoustic-resonator-based devices, wireless circuits, and sparse signal processing. If successful, this new chip-scale affordable system will enable a transformative functionality -- energy-efficient sensing of densely occupied wide spectrum in real time -- that allows us to substantially enhance spectrum efficiency via dynamic spectrum access. In addition, activities are planned to ensure that this project will have long-lasting effects in a number of important dimensions, from education to industry, and from electromagnetic spectrum policy to outreach.Recent work has demonstrated the possibility of acquiring GHz-wide signals with moderate-speed analog-to-digital converters at a sub-Nyquist rate by leveraging compressive sensing or sparse Fourier transform. However, all these systems require the spectrum to be sparse and fall short when the spectrum is densely occupied. In contrast to existing spectrum sensing approaches that digitize the entire bandwidth of each channel, this project harnesses a new idea that monitoring only a small fraction of the channel bandwidth is sufficient for occupancy detection. Based on this concept, the project will leverage a novel overtone micro-electro mechanical-system (MEMS) RF resonator to create many very narrow, sharp, and equally spaced passbands across the GHz-wide spectrum. The end result is that the overtone filter sparsifies the spectrum by suppressing, within every channel, the redundant spectrum content for occupancy detection. This filtering-created sparsity allows the utilization of sparse Fourier transform algorithm and moderate-speed analog-to-digital converters to achieve spectrum sensing with high energy efficiency. With a sufficient number of filter passbands, the proposed energy-efficient spectrum sensor captures all channels and does not miss any occupancy information. This project will also develop a wide-tuning-range RF overtone filtering microsystem through a filter-circuit co-design to support multi-band operations and sensing of multi-GHz wide spectrum via scanning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对无线应用的需求不断增长,导致了前所未有的射频(RF)频谱短缺,但频谱接入将成为我国经济增长和技术领先地位的日益重要的基础。动态共享频谱接入方案有望显著提高频谱效率。共享频谱接入的关键使能技术是一种实时传感器,可以监控非常宽和拥挤的频谱。不幸的是,使用现有技术对宽且拥挤的频谱的实时接入需要极其耗电的高速模数转换器,因此对于能量受限的移动的应用是不实用的。该项目将通过融合基于RF声学谐振器的设备,无线电路和稀疏信号处理的最新创新,开发新一代节能和低成本的频谱传感系统。如果成功,这种新的芯片级经济实惠的系统将实现一种变革性的功能--在真实的时间内对密集占用的宽频谱进行节能感知--使我们能够通过动态频谱接入大幅提高频谱效率。此外,还计划开展活动,以确保该项目在从教育到工业、从电磁频谱政策到外展等多个重要方面产生持久影响。最近的工作已经证明,通过利用压缩感知或稀疏傅里叶变换,以亚奈奎斯特速率使用中速模数转换器获取GHz宽信号的可能性。然而,所有这些系统都要求频谱是稀疏的,并且当频谱被密集地占用时,频谱不足。与现有的频谱感测方法相比,该项目利用了一个新的想法,即只监测一小部分信道带宽就足以进行占用检测。基于这一概念,该项目将利用新型泛音微机电系统(MEMS)RF谐振器在GHz宽频谱上创建许多非常窄、尖锐且等间距的通带。最终结果是泛音滤波器通过在每个信道内抑制用于占用检测的冗余频谱内容来稀疏化频谱。这种滤波产生的稀疏性允许利用稀疏傅立叶变换算法和中速模数转换器来实现具有高能量效率的频谱感测。有了足够数量的滤波器通带,所提出的节能频谱传感器捕获所有信道,不会错过任何占用信息。该项目还将通过滤波器电路协同设计开发宽调谐范围的RF泛音滤波微系统,以支持多频段操作和通过扫描检测多GHz宽频谱。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An X-Band Oscillator Utilizing Overtone Lithium Niobate MEMS Resonator and 65-nm CMOS
5 GHz A1 Mode Lateral Overtone Bulk Acoustic Resonators in Thin-Film Lithium Niobate
采用薄膜铌酸锂的 5 GHz A1 模式横向泛音体声谐振器
Enabling IoT Self-Localization Using Ambient 5G Signals
使用环境 5G 信号实现物联网自定位
A Passive-Mixer-First Acoustic-Filtering Superheterodyne RF Front-End
无源混频器优先的声学滤波超外差射频前端
Integrated Self-Adaptive and Power-Scalable Wideband Interference Cancellation for Full-Duplex MIMO Wireless
用于全双工 MIMO 无线的集成自适应和功率可扩展宽带干扰消除
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin Zhou其他文献

Results from a Quasi-experimental Study of a Training Intervention for Healthy Eating Behaviors of Students
  • DOI:
    10.14704/nq.2018.16.2.1165
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin Zhou
  • 通讯作者:
    Jin Zhou
Numerical study on the standing morphology of an oblique detonation wave under the influence of an incoming boundary layer.
入射边界层影响下斜爆波驻态形态的数值研究。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Liu;Jin Zhou;Zhiyong Lin
  • 通讯作者:
    Zhiyong Lin
Theranostic Infection-Responsive Coating to In Situ Detect and Prevent Urinary Catheter Blockage
用于原位检测和防止导尿管堵塞的治疗诊断感染响应涂层
  • DOI:
    10.1002/admi.201801242
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jin Zhou;Sen Hou;Linhao Li;Danyu Yao;Yuanyuan Liu;A. Tobias A. Jenkins;Yubo Fan
  • 通讯作者:
    Yubo Fan
ECAS: an efficient and conditional privacy preserving collision warning system in fog-based vehicular ad hoc networks
ECAS:基于雾的车载自组织网络中高效且有条件的隐私保护碰撞预警系统
  • DOI:
    10.1007/s42045-020-00041-y
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiguang Qin;Yuedi Li;Xin Ye;Jin Zhou;Minsheng Cao;Dajiang Chen
  • 通讯作者:
    Dajiang Chen
Development of a prototype wound dressing technology which can detect and report colonization by pathogenic bacteria.
开发一种原型伤口敷料技术,可以检测和报告病原菌的定植。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Jin Zhou;Thet Naing Tun;Sung;J. Mercer;M. Laabei;R. AmberE.;Young;A. Jenkins
  • 通讯作者:
    A. Jenkins

Jin Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
ERI: FD-WiNoC: Area and Energy Efficient Full Duplex Transceiver System for Wireless Network on Chip
ERI:FD-WiNoC:用于片上无线网络的区域和节能全双工收发器系统
  • 批准号:
    2302010
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Energy-efficient Chip for Autonomous Navigation of Energy-Constrained Miniature Robots
用于能量受限微型机器人自主导航的节能芯片
  • 批准号:
    545676-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Energy-efficient Chip for Autonomous Navigation of Energy-Constrained Miniature Robots
用于能量受限微型机器人自主导航的节能芯片
  • 批准号:
    545676-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Scalable fabrication of on-chip Li CO2 batteries for efficient electrocatalysts screening and energy storage mechanism study
可扩展制造片上锂二氧化碳电池,用于高效电催化剂筛选和储能机制研究
  • 批准号:
    EP/V002260/1
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Research Grant
Energy-efficient Chip for Autonomous Navigation of Energy-Constrained Miniature Robots
用于能量受限微型机器人自主导航的节能芯片
  • 批准号:
    545676-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
SHF: Small: Energy-Efficient and Reliable Communication with Silicon Photonics for Terascale Datacenters-on-Chip
SHF:小型:采用硅光子技术实现兆兆级片上数据中心的节能且可靠的通信
  • 批准号:
    1813370
  • 财政年份:
    2018
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
SHF: Small: Energy Efficient Learning on Chip with Quantized Representations
SHF:小型:具有量化表示的芯片上节能学习
  • 批准号:
    1815899
  • 财政年份:
    2018
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    1652866
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
  • 批准号:
    1640075
  • 财政年份:
    2016
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了