Collaborative Research: Direct, Nozzle-Free Printing of Functional Nanomaterials Using Ultrasound Bubble Cavitation

合作研究:利用超声波气泡空化直接、无喷嘴打印功能纳米材料

基本信息

  • 批准号:
    1825502
  • 负责人:
  • 金额:
    $ 18.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The project aims to provide a robust understanding of the fundamental science behind the working mechanism of a nozzle-free liquid-jetting system. Widely employed state-of-the-art printing techniques rely primarily on the use of nozzles to deposit materials. Nozzles can get clogged, which adversely affects printing reliability and reproducibility. This problem becomes more significant when the nozzle diameter is reduced for high-resolution printing, which is in increasing demand. Additionally, it is difficult to print inks or pastes that contain particles, flakes, and high-aspect ratio nanomaterials. This award supports research to provide knowledge for the development of a nozzle-free additive manufacturing process, which can eliminate clogs and enable narrower jet streams required for high resolution printing. The ultrasound bubble cavitation process enables deposition of different types, shapes, and sizes of nanomaterials on rigid and flexible substrates. The absence of nozzles eliminates clogging problems. Nanomaterial-based additively manufactured devices find a wide range of applications, from electronics to biomaterials to sensors. Therefore, the results from this study benefits the printing industry and the national economy. This project involves several disciplines including applied physics, electrical engineering, mechanical engineering, bioengineering, and materials science. The multi-disciplinary research creates a unique environment, which helps broaden participation of women and underrepresented groups in research and positively impacts engineering education. The project uses YouTube and other social media platforms to disseminate knowledge to a wider community.The project studies a liquid jetting system enabled by a single cavitation bubble created by laser-generated focused ultrasound to print various nanostructures. The ultrasound bubble cavitation printing process is nozzle-less, thus avoiding the clogging problems in existing nozzle-based additive manufacturing techniques. However, a robust understanding of the fundamental mechanism behind the liquid jetting and energy conversion processes involved is needed to realize the full application potential of using this technique for additive manufacturing. To understand the ultrasonic liquid jetting mechanism, the research team develops models of acoustic interference at the air-liquid interface and cavitation zone, laser-flash shadowgraphy to capture the hydrodynamics of bubble formation and jetting, and bubble formation dynamics as a function of varying physical parameters. To design efficient an optoacoustic transducer, the team studies the effect of laser parameters on thermal transport properties in light-absorbing nanocomposite materials leading to high pressure amplitudes, investigates design aspects of photoacoustic lens leading to high focal gain, and fabricates composite lenses and determines the geometric gain, peak pressure amplitude, and lens breakdown factors. Finally, the team prints nanomaterial films, and compares the quality and characteristics of printed films against those obtained with traditional printing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在提供对无摩擦液体喷射系统工作机制背后的基础科学的深入了解。广泛采用的最先进的印刷技术主要依赖于使用喷嘴来存款材料。喷嘴可能会堵塞,这会对打印的可靠性和再现性产生不利影响。当为了高分辨率打印而减小喷嘴直径时,该问题变得更加显著,这是日益增长的需求。此外,难以印刷含有颗粒、薄片和高纵横比纳米材料的油墨或糊剂。该奖项支持研究,为开发无障碍增材制造工艺提供知识,该工艺可以消除堵塞并实现高分辨率打印所需的更窄射流。超声气泡空化过程能够在刚性和柔性基底上沉积不同类型、形状和尺寸的纳米材料。没有喷嘴消除了堵塞问题。基于纳米材料的增材制造设备有着广泛的应用,从电子产品到生物材料再到传感器。因此,本研究的成果对印刷业和国民经济都有一定的意义。该项目涉及应用物理、电气工程、机械工程、生物工程和材料科学等多个学科。多学科研究创造了一个独特的环境,这有助于扩大妇女和代表性不足的群体在研究中的参与,并对工程教育产生积极影响。该项目利用YouTube和其他社交媒体平台向更广泛的社区传播知识。该项目研究了一种液体喷射系统,该系统通过激光产生的聚焦超声产生的单个空化气泡来打印各种纳米结构。 超声气泡空化打印过程是无摩擦的,因此避免了现有的基于摩擦的增材制造技术中的堵塞问题。然而,需要对所涉及的液体喷射和能量转换过程背后的基本机制有深入的了解,以实现将这种技术用于增材制造的全部应用潜力。为了理解超声波液体喷射机制,研究小组开发了气液界面和空化区的声学干扰模型,激光闪光阴影法来捕获气泡形成和喷射的流体动力学,以及气泡形成动力学作为不同物理参数的函数。为了设计高效的光声换能器,该团队研究了激光参数对光吸收纳米复合材料中的热传输特性的影响,导致高压力振幅,研究了导致高焦点增益的光声透镜的设计方面,并制造了复合透镜,并确定了几何增益,峰值压力振幅和透镜击穿因素。最后,该团队打印纳米材料薄膜,并将打印薄膜的质量和特性与传统打印系统进行比较。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harish Subbaraman其他文献

A graphene integrated Kapton based flexible and highly sensitive plasmonic sensor for uric acid sensing
一种用于尿酸传感的石墨烯集成聚酰亚胺基柔性高灵敏度等离子体传感器
  • DOI:
    10.1016/j.snr.2025.100337
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Sagar Kumar Verma;Yadvendra Singh;Harish Subbaraman;Nirmala Kandadai
  • 通讯作者:
    Nirmala Kandadai

Harish Subbaraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349884
  • 财政年份:
    2024
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Co-Design of Shape and Fabrication Plans for Direct-Ink Write Printing Through Predictive Simulation
合作研究:HCC:中:通过预测模拟共同设计直接墨水书写打印的形状和制造计划
  • 批准号:
    2212048
  • 财政年份:
    2022
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Surface-specific Aerosol Chemistry: Direct Observations, Kinetics, and Environmental Impact
合作研究:表面特定气溶胶化学:直接观察、动力学和环境影响
  • 批准号:
    2203983
  • 财政年份:
    2022
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Surface-specific Aerosol Chemistry: Direct Observations, Kinetics, and Environmental Impact
合作研究:表面特定气溶胶化学:直接观察、动力学和环境影响
  • 批准号:
    2203982
  • 财政年份:
    2022
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
Collaborative Research: RECODE: Microfluidic and genetic technologies to direct and select retinal cell types from human induced pluripotent stem cell-derived retinal organoids
合作研究:RECODE:微流体和遗传技术从人类诱导多能干细胞衍生的视网膜类器官中指导和选择视网膜细胞类型
  • 批准号:
    2225488
  • 财政年份:
    2022
  • 资助金额:
    $ 18.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了