I-Corps: Catalytic membrane to eliminate organic pollutants in industrial wastewater

I-Corps:消除工业废水中有机污染物的催化膜

基本信息

  • 批准号:
    2330630
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a catalytic membrane used to destroy organic pollutants in industrial wastewater. Industrial sectors spanning pharmaceuticals, chemicals, oil and gas, among others, produce contaminant-laden waste streams that require costly, energy intensive treatment processes. Due to increasing regional water scarcity, new regulatory restrictions, and shareholder pressure to adopt sustainable practices, there are several driving forces for industrial operations to implement effective, in-house treatment. Several options currently exist for industrial wastewater treatment, including membrane filtration and activated carbon/charcoal adsorption. Many industrial facilities currently use one or more of these technologies to reduce contaminant levels prior to discharge into the municipal wastewater treatment system. However, in-house treatment typically results in contaminant-laden waste streams or solids and/or does not completely remove organic contaminants. The proposed technology is designed to degrade toxic organics within minutes. Passing wastewater streams through the proposed catalytic membrane efficiently mineralizes organic contaminants to CO2 and H2O, creating benign waste streams that may be recycled or directly released into local municipalities. This I-Corps project has the potential to revolutionize wastewater treatment, improving treatment efficacy while simultaneously reducing cost and energy consumption.This I-Corps project is based on the development of a catalytic material that may be used to break down contaminants not removed by conventional water treatment processes. Using the proposed technology, organic pollutants, such as hydrocarbons, pharmaceutical products, and plasticizers are destroyed within minutes without the need for secondary treatments. This technology falls under a category of treatment technologies called advanced oxidation processes (AOPs), which are water treatment methods designed to destroy toxic pollutants via the production of reactive radicals. The proposed catalyst rapidly generates these radicals in-situ, relying on the addition of an inexpensive precursor salt to the influent. Although employed in select industries, current AOPs cannot achieve complete destruction of contaminants, resulting in the production of toxic byproducts. Furthermore, most AOPs in the market incur high energy costs, rendering them unattractive for wider industry investment. The proposed catalyst and treatment scheme mitigate these problems by offering near-complete elimination of organic pollutants at record-breaking efficiencies while maintaining lower operating costs than industry benchmarks. Many industries may benefit from implementing this technology in their treatment process by reducing treatment costs, increasing their capacity for water reuse, and better meeting regulatory requirements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发用于破坏工业废水中有机污染物的催化膜。跨越药品,化学药品,石油和天然气等的工业部门会产生富有污染物的废物流,这些废物需要昂贵,能源密集的处理过程。由于区域缺水,新的监管限制以及股东以采用可持续实践的压力,有几种用于实施有效内部治疗的工业行动的驱动力。目前,有几种用于工业废水处理的选择,包括膜过滤和活化的碳/木炭吸附。目前,许多工业设施都使用其中一种或多种技术来降低污染物水平,然后再将其排放到市政废水处理系统中。但是,内部处理通常会导致污染物含量的废物流或固体和/或不完全去除有机污染物。拟议的技术旨在在几分钟内降低有毒有机物。通过拟议的催化膜通过废水流有效地将有机污染物矿化到二氧化碳和H2O,从而产生良性的废物流,这些良性废物流可能被回收或直接释放到当地市政当局。这个I-Corps项目有可能彻底改变废水处理,提高治疗效果,同时降低成本和能源消耗。该I-Corps项目基于开发催化材料的开发,该催化材料可用于分解未通过常规水处理过程所消除的污染物。使用所提出的技术,有机污染物(例如碳氢化合物,制药产品和增塑剂)在几分钟内被破坏,而无需进行二次处理。该技术属于称为高级氧化过程(AOPS)的一类治疗技术,这些技术是旨在通过产生反应性自由基来破坏有毒污染物的水处理方法。提出的催化剂迅速产生这些自由基的原位,依靠在进水中添加廉价的前体盐。尽管当前的AOP在某些行业中使用,但无法实现污染物的彻底破坏,从而导致有毒副产品的产生。此外,市场上的大多数AOP都会产生高能源成本,从而使它们对更广泛的行业投资没有吸引力。拟议的催化剂和治疗方案通过在创纪录的效率下几乎完全消除有机污染物,同时维持比行业基准低的运营成本来减轻这些问题。许多行业可以通过降低治疗成本,提高其水资源的能力并满足监管要求,从而在其治疗过程中实施这项技术受益。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的评估来提供支持的,并具有更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaehong Kim其他文献

Inefficiency of the Subgame Optimal Entry Regulation
Simple on-line dead-time compensation scheme based on disturbance voltage observer
基于扰动电压观测器的简单在线死区补偿方案
Effect of clay content on well-graded sands due to infiltration
渗透作用下粘土含量对级配砂的影响
  • DOI:
    10.1016/j.enggeo.2008.08.002
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Sangseom Jeong;Jaehong Kim;Kyu
  • 通讯作者:
    Kyu
Design of a Soft Wearable Passive Fitness Device for Upper Limb Resistance Exercise
一种软质可穿戴上肢阻力运动被动健身装置的设计
Adaptive gesture tracking and recognition using acceleration sensors for a mobile device
使用移动设备的加速度传感器进行自适应手势跟踪和识别
  • DOI:
    10.1504/ijwmc.2015.068624
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minsu Jang;Jaehong Kim;Yongho Seo;H. Yang
  • 通讯作者:
    H. Yang

Jaehong Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaehong Kim', 18)}}的其他基金

ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices
ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS
  • 批准号:
    2120418
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Environmental Materials Beyond and Below Nanoscale: Palladium Single Atom
超越和低于纳米尺度的环境材料:钯单原子
  • 批准号:
    1955793
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Quantitative Insights on Environmental Implications of Functionalizing Fullerenes
功能化富勒烯对环境影响的定量见解
  • 批准号:
    1439048
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CBET: Upconversion Enhanced Visible Light Sensitization of Semiconductor Photocatalysts for Environmental Application
CBET:用于环境应用的半导体光催化剂的上转换增强可见光敏化
  • 批准号:
    1335934
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Quantitative Insights on Environmental Implications of Functionalizing Fullerenes
功能化富勒烯对环境影响的定量见解
  • 批准号:
    1235916
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Converting Visible Light to UVC: Lanthanide Upconversion Nano-Phosphors for Light-Activated Biocidal Surface Development
将可见光转换为 UVC:用于光激活杀菌表面开发的镧系元素上转换纳米荧光粉
  • 批准号:
    1033866
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing Novel Surface Immobilized Photocatalysts Using Functionalized C60
合作研究:使用功能化 C60 开发新型表面固定光催化剂
  • 批准号:
    0932872
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

跨尺度三维低贵金属基催化材料创制与电解水膜电极性能调控
  • 批准号:
    52333010
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
导电膜纳米孔道内单原子催化剂的构筑及其电催化还原硝酸盐的性能研究
  • 批准号:
    52370062
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
污水再生光催化氧化/超滤耦合工艺的膜污染机制与调控原理研究
  • 批准号:
    52370022
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
MOFs催化膜修饰电极的构筑及其电催化还原卤代芳烃的研究
  • 批准号:
    22302017
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
细菌生物膜高乳酸微环境介导的免疫抑制机制研究及纳米催化代谢乳酸治疗策略
  • 批准号:
    82372423
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Processivity and Catalytic Mechanism of Aldosterone Synthase
醛固酮合酶的持续合成能力和催化机制
  • 批准号:
    10600520
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Probing the molecular mechanisms that regulate key steps in the GPCR-sensory response pathway responsible for vision in dim light
探索调节负责弱光视觉的 GPCR 感觉反应通路关键步骤的分子机制
  • 批准号:
    10635707
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
G6PC Enzymology, Structure, Function and Role in the Regulation of Fasting Blood Glucose
G6PC 酶学、结构、功能及其在空腹血糖调节中的作用
  • 批准号:
    10584866
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Evaluation of specific complexes that control regeneration of functional fiber systems in periodontal ligaments by non-catalytic scaffolding mechanism
通过非催化支架机制评估控制牙周膜功能纤维系统再生的特定复合物
  • 批准号:
    23K09229
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of subsurface atomic layers to enhance oxide catalytic activity and elucidate reaction mechanisms
控制次表面原子层以增强氧化物催化活性并阐明反应机制
  • 批准号:
    23K13663
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了