NSF-BSF: DYNAMICS OF MATERIALS FAILURE
NSF-BSF:材料失效动力学
基本信息
- 批准号:1827343
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThe National Science Foundation and the United States-Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research (DMR) funds this award, which supports research and educational activities focused on the dynamics of materials failure. Designing safe and robust materials for transportation, energy storage, or biomedical implants requires a basic understanding of crack propagation that is the most common mode of materials failure. This project is aimed at understanding how cracks propagate in brittle materials such as glass, ceramics, and some polymeric materials and metals, which typically fracture abruptly. While traditional fracture mechanics predicts that brittle cracks should rapidly accelerate along a straight path to reach the speed at which sound travels over a flat surface, cracks are experimentally observed to reach less than half of that speed. For reasons that are not fundamentally understood, crack propagation becomes dynamically unstable, thereby causing cracks to strongly deviate from a straight path and preventing them from reaching their sonic limiting speed. This research will center on using computation and models to produce a more complete picture of unstable crack propagation in brittle materials for various fracture geometries investigated experimentally and different materials structures and properties. Basic insights into dynamic fracture instabilities are expected to improve our fundamental theoretical understanding of materials failure, contributing to both further developments of computational methods and the theory of cracks. Advances in understanding may help predict the failure of a wide range of biological, engineering, and geophysical materials. This project will contribute to the training of undergraduate and graduate students in the US and Israel, and include school outreach and teaching activities in both countries. TECHNICAL SUMMARYThe National Science Foundation and the United States-Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award that supports research and education on crack propagation, a topic of both fundamental and practical interest. While the classical theory of linear elastic fracture mechanics predicts that cracks in brittle materials should smoothly accelerate to their sonic limiting velocity, cracks are widely observed to develop dynamic instabilities before reaching this velocity. Depending on the onset velocity of instability and dimensionality, instabilities can be varied and complex. They may manifest as facet formation, micro-branching, crack tip oscillations or tip splitting. Despite their fundamental importance and apparent similarities to other interfacial pattern instabilities in condensed-matter physics and materials science, how dimensionality and material properties, such as elastic nonlinearity and heterogeneities, individually or jointly contribute to produce those dynamic fracture instabilities remains poorly understood.The PIs propose to combine novel theoretical and computational approaches to understand at a fundamental level the mechanisms and interrelations of varied dynamic fracture instabilities. Computational studies will exploit the phase-field approach, which describes the short-scale physics of failure and macroscopic elasticity within a self-consistent set of equations that can be used to simulate complex crack paths and to establish quantitative benchmark comparisons with experiments. Simulations will be guided, and their results interpreted, by further development of a theory of cracks that accounts for elastic nonlinearity. Studies will center on investigating the role of dimensionality, heterogeneities, and nonlinearity in dynamic instabilities, helping to address largely unanswered questions such as: Why do cracks accelerate to nearly their sonic speeds in quasi two-dimensional (2D) geometries, but become unstable in the form of facet formation or micro-branching at much lower speed in 3D geometries? Are 3D instabilities due to the increased dimensionality of the crack front from a point in 2D to a line in 3D, or does nucleation of a facet or micro-branch require the interaction of the crack front with a localized heterogeneity? Does elastic nonlinearity and its associated emergent length scale, recently shown by phase-field simulations to play a key role in the oscillatory instability of high speed cracks in 2D, play a role in 3D instabilities? Moreover, how are facet formation and micro-branching related? Simulation results will be quantitatively compared to experimental observations in brittle gels, which provide unique capability to visualize in situ crack front dynamics in 2D and 3D during the fracture process. Basic insights into dynamic fracture instabilities are expected to improve our fundamental theoretical understanding of materials failure, contributing to both further developments of the phase-field method and the theory of cracks that may help predict the failure of a wide range of natural, technological, and geophysical brittle materials. In addition, this project offers unique opportunities for engaging and training the next generation of scientists through K-12 school outreach activities and graduate-level teaching material developed and shared by the PIs in the US and Israel, which use simple experiments, teaching modules, and projects to convey the excitement of understanding how things break.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的合作。NSF材料研究部(DMR)资助该奖项,该奖项支持专注于材料失效动态的研究和教育活动。为运输、储能或生物医学植入物设计安全、坚固的材料需要对裂纹扩展有基本的了解,这是材料失效的最常见模式。 该项目旨在了解裂纹如何在脆性材料中传播,如玻璃,陶瓷和一些聚合物材料和金属,这些材料通常会突然断裂。虽然传统断裂力学预测脆性裂纹应该沿着沿着直线路径快速加速,以达到声音在平坦表面上传播的速度,但实验观察到裂纹达到不到该速度的一半。由于根本上不了解的原因,裂纹扩展变得动态不稳定,从而导致裂纹强烈偏离直线路径,并阻止它们达到其音速极限速度。这项研究将集中在使用计算和模型,以产生一个更完整的图片不稳定的裂纹扩展脆性材料的各种断裂几何形状的实验研究和不同的材料结构和性能。 对动态断裂不稳定性的基本认识有望提高我们对材料失效的基本理论理解,有助于计算方法和裂纹理论的进一步发展。理解的进步可能有助于预测各种生物,工程和地球物理材料的失效。该项目将有助于在美国和以色列的本科生和研究生的培训,并包括在这两个国家的学校推广和教学活动。美国国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的合作。美国国家科学基金会材料研究部资助该奖项,支持裂纹扩展的研究和教育,这是一个既有基础又有实际意义的主题。虽然线弹性断裂力学的经典理论预测,脆性材料中的裂纹应平稳地加速到其声波极限速度,但广泛观察到裂纹在达到该速度之前发展动态不稳定性。根据不稳定性的起始速度和维数,不稳定性可以是多种多样的和复杂的。它们可以表现为刻面形成、微分支、裂纹尖端振荡或尖端分裂。尽管它们与凝聚态物理学和材料科学中的其他界面模式不稳定性具有根本的重要性和明显的相似性,但维度和材料特性,如弹性非线性和非均匀性,PI建议将新的理论和计算方法联合收割机结合起来,从根本上理解这些机制,各种动态断裂不稳定性的相互关系。计算研究将利用相场方法,该方法描述了一组自洽方程内的故障和宏观弹性的短尺度物理学,可用于模拟复杂的裂纹路径,并建立与实验的定量基准比较。模拟将指导,他们的结果解释,进一步发展的理论,占弹性非线性裂纹。研究将集中在调查的维度,异质性和非线性的动态不稳定性的作用,帮助解决很大程度上悬而未决的问题,如:为什么裂纹加速到接近其音速在准二维(2D)的几何形状,但成为不稳定的小平面形成或微分支的形式在3D几何形状在低得多的速度?3D不稳定性是由于裂纹前缘从2D中的点到3D中的线的维数增加,还是小平面或微分支的成核需要裂纹前缘与局部异质性的相互作用?最近相场模拟表明,弹性非线性及其相关的新兴长度尺度在2D高速裂纹的振荡不稳定性中发挥了关键作用,在3D不稳定性中发挥了作用?此外,刻面形成和微分支是如何相关的?模拟结果将与脆性凝胶的实验观察进行定量比较,这提供了在断裂过程中以2D和3D方式可视化原位裂纹前沿动态的独特能力。对动态断裂不稳定性的基本认识有望提高我们对材料失效的基本理论理解,有助于相场方法和裂纹理论的进一步发展,这可能有助于预测各种自然、技术和地球物理脆性材料的失效。此外,该项目提供了独特的机会,通过K-12学校推广活动和研究生水平的教学材料,吸引和培训下一代科学家,这些材料由美国和以色列的PI开发和共享,使用简单的实验,教学模块,该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oscillatory and tip-splitting instabilities in 2D dynamic fracture: The roles of intrinsic material length and time scales
- DOI:10.1016/j.jmps.2021.104372
- 发表时间:2020-12
- 期刊:
- 影响因子:5.3
- 作者:A. Vasudevan;Yuri Lubomirsky;Chih-Hung Chen;Eran Bouchbinder;A. Karma
- 通讯作者:A. Vasudevan;Yuri Lubomirsky;Chih-Hung Chen;Eran Bouchbinder;A. Karma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alain Karma其他文献
Ubiquitin Ligase Rififylin (RFFL) Has Yin-Yang Effects on Rabbit Cardiac Transient Outward (<em>I</em><sub>to</sub>) Potassium Channels
- DOI:
10.1016/j.bpj.2019.11.722 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Anatoli Y. Kabakov;Karim Roder;Karni S. Moshal;YiChun Lu;Mingwang Zhong;Saroj Dhakal;Alain Karma;Gideon Koren - 通讯作者:
Gideon Koren
Path differences between quasistatic and fatigue cracks in anisotropic media
各向异性介质中准静态裂纹和疲劳裂纹的路径差异
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinyuan Zhai;Thomas Corre;A. Mesgarnejad;Alain Karma;Véronique Lazarus - 通讯作者:
Véronique Lazarus
Benchmark microgravity experiments and computations for 3D dendritic-array stability in directional solidification
定向凝固中三维枝晶阵列稳定性的基准微重力实验与计算
- DOI:
10.1016/j.actamat.2025.120954 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:9.300
- 作者:
Mehdi Medjkoune;Trevor Lyons;Fátima L. Mota;Jiefu Tian;Kaihua Ji;Louise Littles;Alain Karma;Nathalie Bergeon - 通讯作者:
Nathalie Bergeon
Clarifying the formation of equiaxed grains and microstructural refinement in the additive manufacturing of Ti-Cu
阐明 Ti-Cu 增材制造中等轴晶粒的形成和组织细化
- DOI:
10.1016/j.matdes.2024.113440 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:7.900
- 作者:
Alec I. Saville;Adriana Eres-Castellanos;Andrew B. Kustas;Levi Van Bastian;Donald F. Susan;Dale E. Cillessen;Sven C. Vogel;Natalie A. Compton;Kester D. Clarke;Alain Karma;Amy J. Clarke - 通讯作者:
Amy J. Clarke
Oscillatory instability and minimum undercooling criterion in directional solidification
- DOI:
10.1016/0022-0248(91)90639-m - 发表时间:
1991-04-01 - 期刊:
- 影响因子:
- 作者:
Pierre Pelcé;Daniel Rochwerger;Alain Karma - 通讯作者:
Alain Karma
Alain Karma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: C*-algebras and Dynamics Beyond the Elliott Program
NSF-BSF:艾略特纲领之外的 C* 代数和动力学
- 批准号:
2400332 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Dynamics of flowing particles in soft confined systems
NSF-BSF:软约束系统中流动粒子的动力学
- 批准号:
2328628 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Quantum Magnetization Dynamics in Open Molecular Junctions
NSF-BSF:开放分子结中的量子磁化动力学
- 批准号:
2318872 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Synergistic Multiscale Modeling and Single-Molecule Fluorescence Studies of the Dynamics and Function of AAA+ Protein Disaggregation Machines
NSF-BSF:AAA 蛋白质解聚机动力学和功能的协同多尺度建模和单分子荧光研究
- 批准号:
2136816 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Modeling and Control of Collective Dynamics for Externally Driven Planar Microswimmers
NSF-BSF:外部驱动平面微型游泳器集体动力学的建模和控制
- 批准号:
2123824 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Nonlinearity, Randomness, and Dynamics: Vistas into the Extreme Mechanics of Non-Euclidean Sheets
NSF-BSF:非线性、随机性和动力学:非欧几里得片的极端力学展望
- 批准号:
2108124 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Dynamics and Operator Algebras beyond the Elliott Classification Program
NSF-BSF:艾略特分类计划之外的动力学和算子代数
- 批准号:
2055771 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: Ecological Implications and Evolutionary Dynamics of a Nascent Sodalis-allied symbiont in a Parasitoid Wasp.
NSF-BSF:寄生蜂中新生 Sodalis 相关共生体的生态影响和进化动力学。
- 批准号:
2114510 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF-BSF: From microscopic propulsion to macroscale dynamics: Active particle transport in complex environments
NSF-BSF:从微观推进到宏观动力学:复杂环境中的活性粒子传输
- 批准号:
1934199 - 财政年份:2019
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: Joint NSF-BSF Proposal: Nonlinear Dynamics with Gross-Pitaevskii Breathers
合作研究:NSF-BSF 联合提案:采用 Gross-Pitaevskii 呼吸器的非线性动力学
- 批准号:
1607215 - 财政年份:2016
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant