CAREER: Enhancing Data Center Storage System with Persistent Memory

职业:利用持久内存增强数据中心存储系统

基本信息

  • 批准号:
    1829524
  • 负责人:
  • 金额:
    $ 45.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Persistent memory technique is envisioned to revolutionize data center storage systems. Its unpredictable performance, energy, and cost benefits can adversely affect productivity, efficiency, and profit in data centers. Though promising, this technical transition can fundamentally change the decades-long memory and storage system design assumptions and introduce critical design challenges. For example, new performance landscape can change the energy efficiency model of data centers and break the existing load balance across various system resources; traditional data reliability schemes can become suboptimal due to the discrepant failure patterns and reliability issues of new memory technologies; current applications and system software may not fully exploit the benefits offered by persistent memory. This research focuses on enhancing the performance, energy-efficiency, and reliability of data center storage system by fully exploiting the potential of persistent memory. The central approach is to rethink data center architecture design strategies and memory/storage stack management, making them persistent memory aware. The project devises fundamental techniques in efficiency modeling, load balancing of critical system resources, and low-cost reliability guarantee across single server memory/storage stack and distributed storage systems. The project also enhances a set of key data center applications by leveraging persistent memory. It is expected that research ideas developed in this project will enable significantly improved access performance, energy efficiency, reliability, and lifetime in data center memory and storage systems, taking a large step in making our daily lives more productive.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
持久存储器技术被设想为革新数据中心存储系统。其不可预测的性能、能源和成本效益可能会对数据中心的生产力、效率和利润产生不利影响。虽然前景看好,但这种技术转变可能会从根本上改变长达数十年的内存和存储系统设计假设,并带来关键的设计挑战。例如,新的性能格局可能会改变数据中心的能源效率模型,并打破各种系统资源之间的现有负载平衡;传统的数据可靠性方案可能会因新内存技术的不一致故障模式和可靠性问题而变得次优;当前的应用程序和系统软件可能无法充分利用持久内存提供的好处。本文的研究重点是通过充分挖掘持久存储器的潜力来提高数据中心存储系统的性能、能效和可靠性。核心方法是重新考虑数据中心架构设计策略和内存/存储堆栈管理,使其具有持久内存意识。该项目设计了效率建模,关键系统资源的负载平衡,以及跨单个服务器内存/存储堆栈和分布式存储系统的低成本可靠性保证的基本技术。该项目还通过利用持久内存增强了一组关键的数据中心应用程序。该项目的研究成果有望大幅提高数据中心存储器和存储系统的访问性能、能效、可靠性和使用寿命,为提高我们的日常生活效率迈出重要一步。该奖项体现了NSF的法定使命,通过基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vorpal: Vector Clock Ordering For Large Persistent Memory Systems
Vorpal:大型持久内存系统的矢量时钟排序
Processing-in-Memory for Energy-Efficient Neural Network Training: A Heterogeneous Approach
SubZero: zero-copy IO for persistent main memory file systems
SubZero:持久主内存文件系统的零拷贝 IO
Binary Star: Coordinated Reliability in Heterogeneous Memory Systems for High Performance and Scalability
双星:异构内存系统中协调可靠性以实现高性能和可扩展性
Characterizing and Modeling Non-Volatile Memory Systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jishen Zhao其他文献

Robotic Reliability Engineering: Experience from Long-Term TritonBot Development
机器人可靠性工程:长期 TritonBot 开发的经验
  • DOI:
    10.1007/978-981-15-9460-1_4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengye Wang;Xiao Liu;Jishen Zhao;H. Christensen
  • 通讯作者:
    H. Christensen
Suraksha: A Framework to Analyze the Safety Implications of Perception Design Choices in AVs
Suraksha:分析自动驾驶汽车感知设计选择的安全影响的框架
GenUnlock: An Automated Genetic Algorithm Framework for Unlocking Logic Encryption
GenUnlock:用于解锁逻辑加密的自动遗传算法框架
Fork is All You Need in Heterogeneous Systems
Fork 是异构系统中您所需要的一切
  • DOI:
    10.48550/arxiv.2404.05085
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixuan Wang;Jishen Zhao
  • 通讯作者:
    Jishen Zhao
Safety-Critical Scenario Generation Via Reinforcement Learning Based Editing
通过基于强化学习的编辑生成安全关键场景
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haolan Liu;Liangjun Zhang;S. Hari;Jishen Zhao
  • 通讯作者:
    Jishen Zhao

Jishen Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jishen Zhao', 18)}}的其他基金

Collaborative Research: FoMR: Enabling High Instructions-per-Cycle (IPC) Counts in Future Multi-NUMA (Non Uniform Memory Access) Systems
合作研究:FoMR:在未来的多 NUMA(非均匀内存访问)系统中实现高每周期指令 (IPC) 计数
  • 批准号:
    2011212
  • 财政年份:
    2020
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2019 International Symposium on Workload Characterization (IISWC)
2019 年工作负载特征国际研讨会 (IISWC) 的 NSF 学生旅费补助金
  • 批准号:
    1945510
  • 财政年份:
    2019
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Exploring Nonvolatility of Emerging Memory Technologies for Architecture Design
SHF:小型:协作研究:探索用于架构设计的新兴内存技术的非易失性
  • 批准号:
    1817077
  • 财政年份:
    2018
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
CCF:Small:Collaborative Research: Taowu: A Heterogeneous Processing-in-Memory for High Performance Scientific Applications
CCF:Small:合作研究:Taowu:用于高性能科学应用的异构内存处理
  • 批准号:
    1829525
  • 财政年份:
    2018
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
CAREER: Enhancing Data Center Storage System with Persistent Memory
职业:利用持久内存增强数据中心存储系统
  • 批准号:
    1652328
  • 财政年份:
    2017
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Continuing Grant
CCF:Small:Collaborative Research: Taowu: A Heterogeneous Processing-in-Memory for High Performance Scientific Applications
CCF:Small:合作研究:Taowu:用于高性能科学应用的异构内存处理
  • 批准号:
    1718158
  • 财政年份:
    2017
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant

相似海外基金

RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
  • 批准号:
    2346718
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
REU Site: Enhancing Undergraduate Experiences in Data and Mobile Cloud Security
REU 网站:增强本科生在数据和移动云安全方面的经验
  • 批准号:
    2349233
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
  • 批准号:
    2348376
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
CRII: CSR: Enhancing Eventual Data Consistency in Multidimensional Scientific Computing through Lightweight In-Memory Distributed Ledger System.
CRII:CSR:通过轻量级内存分布式账本系统增强多维科学计算中的最终数据一致性。
  • 批准号:
    2348330
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
ERI: From Data to Design: Enhancing Pedestrian Infrastructure for Well-Being through Mobile Sensing and Experience Sampling in the Wild
ERI:从数据到设计:通过移动传感和野外体验采样增强行人基础设施以促进福祉
  • 批准号:
    2347012
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
Enhancing Multidisciplinary Team Meetings via AI-Enabled Data Assimilation
通过人工智能支持的数据同化增强多学科团队会议
  • 批准号:
    IM240100224
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Mid-Career Industry Fellowships
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Enhancing Dynamic Population-Level Epidemiological Models by Incorporating Wastewater Surveillance Data
LEAPS-MPS:通过纳入废水监测数据来增强动态人口水平流行病学模型
  • 批准号:
    2316809
  • 财政年份:
    2023
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了