Collaborative Research: Causal Discovery in the Presence of Measurement Error Theory and Practical Algorithms

协作研究:测量误差理论和实用算法存在下的因果发现

基本信息

  • 批准号:
    1829560
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The discovery of cause-and-effect relationships is a fundamental notion in science. To find such causal relationships, traditional methods based on interventions or randomized experiments are usually expensive or even impossible. Causal discovery aims to find the underlying causal structure or model from purely observational data and has many applications in various disciplines. Despite its successes on a number of real problems, the presence of measurement error in the observed data can produce serious mistakes in the output of various causal discovery methods. Given the ubiquity of measurement error caused by instruments or proxies used in the measuring process, this problem has been recognized as one of the main obstacles to reliable causal discovery. It is still unknown to what extent the causal structure for relevant variables can be identified in the presence of measurement error, let alone how to develop practical algorithms to solve this problem. This project aims to fill the void. It will investigate what information of the causal model of interest can be recovered from observed data and what assumptions one has to make to achieve successful recovery of the causal information. Based on such theoretical results, the project will then investigate efficient estimation procedures. The project will establish theoretical identifiability results for the underlying, true causal structure and, in light of such results, develop practical causal discovery algorithms. Preliminary results show theoretically how measurement error changes the (conditional) independence and dependence relationships in the data, i.e., how the (conditional) independence and independence relations between the observed variables are different from those between the measurement-error-free variables. Based on the preliminary results, several research tasks will be carried out. First, classical causal discovery often assumes a linear-Gaussian model for the data, in which the causal relations are linear and the variables are jointly Gaussian. This project will establish the conditions under which the underlying causal model is identifiable up to an equivalence class or only partially identifiable. Second, this study will investigate how the identifiability of underlying causal structure in the presence of measurement error can actually benefit from the non-Gaussian noise assumption. Third, this study will develop statistically more efficient estimation procedures, by extending the GES method, by exploiting suitable sparsity constraints, or by extending the A* Bayesian network learning procedure. Finally, the above ideas will be extended to deal with related models in causality or statistics, including other contamination models, nonlinear causal models, and Markov networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发现因果关系是科学的一个基本概念。为了找到这样的因果关系,基于干预或随机实验的传统方法通常是昂贵的,甚至是不可能的。因果发现旨在从纯粹的观测数据中找到潜在的因果结构或模型,在各个学科中都有许多应用。尽管它在许多实际问题上取得了成功,但观测数据中测量误差的存在会在各种因果发现方法的输出中产生严重错误。由于测量过程中使用的仪器或代理引起的测量误差无处不在,这一问题已被认为是可靠因果发现的主要障碍之一。在存在测量误差的情况下,相关变量的因果结构在多大程度上可以被识别,更不用说如何开发实用的算法来解决这一问题了。该项目旨在填补这一空白。它将调查兴趣因果模型的哪些信息可以从观察数据中恢复,以及必须做出哪些假设才能成功恢复因果信息。基于这些理论结果,该项目将研究有效的评估程序。该项目将为潜在的、真实的因果结构建立理论可识别性结果,并根据这些结果,开发实用的因果发现算法。初步结果从理论上说明了测量误差如何改变数据中的(条件)独立和依赖关系,即观测变量之间的(条件)独立和独立关系与无测量误差变量之间的(条件)独立和独立关系是如何不同的。在初步结果的基础上,将开展若干研究任务。首先,经典的因果发现通常假设数据为线性-高斯模型,其中因果关系是线性的,变量是联合高斯的。这个项目将建立一个条件,在这个条件下,潜在的因果模型是可识别的,直到一个等价类或只是部分可识别的。其次,本研究将探讨在存在测量误差的情况下,潜在因果结构的可识别性如何实际上受益于非高斯噪声假设。第三,本研究将通过扩展GES方法,利用适当的稀疏性约束,或扩展A*贝叶斯网络学习过程,开发统计上更有效的估计过程。最后,上述思想将扩展到处理因果关系或统计中的相关模型,包括其他污染模型,非线性因果模型和马尔可夫网络。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changhe Yuan其他文献

Efficient Heuristic Search for M-Modes Inference
M 模式推理的高效启发式搜索
Importance sampling for bayesian networks: principles, algorithms, and performance
贝叶斯网络的重要性采样:原理、算法和性能
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marek J Druzdzel;Changhe Yuan
  • 通讯作者:
    Changhe Yuan
A Comparison on the Effectiveness of Two Heuristics for Importance Sampling
两种启发式重要性抽样的有效性比较
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changhe Yuan;Marek J Druzdzel
  • 通讯作者:
    Marek J Druzdzel
A Depth-First Branch and Bound Algorithm for Learning Optimal Bayesian Networks
用于学习最优贝叶斯网络的深度优先分支定界算法
Learning Diverse Bayesian Networks
学习多样化的贝叶斯网络

Changhe Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changhe Yuan', 18)}}的其他基金

CAREER: Explanation, Decision Making, and Learning in Graphical Models
职业:图形模型中的解释、决策和学习
  • 批准号:
    0953723
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
SGER: A Framework for Explanation in Bayesian Networks
SGER:贝叶斯网络的解释框架
  • 批准号:
    0842480
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Causal Structures: Experiments and Machine Learning
协作研究:因果结构:实验和机器学习
  • 批准号:
    2315665
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: Causal Structures: Experiments and Machine Learning
协作研究:因果结构:实验和机器学习
  • 批准号:
    2315663
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: Assessing the Causal Influence of Atmospheric Opacity and Sea Ice on Arctic Warming in a Novel Circulation-controlled Framework
合作研究:在新型环流控制框架中评估大气不透明度和海冰对北极变暖的因果影响
  • 批准号:
    2233420
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: Assessing the Causal Influence of Atmospheric Opacity and Sea Ice on Arctic Warming in a Novel Circulation-controlled Framework
合作研究:在新型环流控制框架中评估大气不透明度和海冰对北极变暖的因果影响
  • 批准号:
    2233421
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: Causal Structures: Experiments and Machine Learning
协作研究:因果结构:实验和机器学习
  • 批准号:
    2315664
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: RI: Causal Decision-Making
协作研究:EAGER:RI:因果决策
  • 批准号:
    2231798
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Causal Explanations and Computation to Understand Misplaced Beliefs
协作研究:使用因果解释和计算来理解错误的信念
  • 批准号:
    2146984
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: RI: Causal Decision-Making
协作研究:EAGER:RI:因果决策
  • 批准号:
    2231797
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了