Excellence in Research: Control of electric and magnetic light with plasmonic nanostructures

卓越的研究:利用等离子体纳米结构控制电光和磁光

基本信息

  • 批准号:
    1830886
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Light is an electromagnetic wave that has both electric and magnetic components. However, when light interacts with matter typically only its electric component is able to interact. This project is focused on the study of light emitted by so-called rare earth ions, which are unique in their ability to interact with both the electric and magnetic components of the light. Such "double interaction" enables additional controls over light in these materials. In particular, the investigators study interaction of both the electric and magnetic components of light with a variety of nanopatterned optical materials. This helps one to obtain knowledge leading to the development of microscopes with higher resolution, advanced biological and chemical sensors, and ultrafast electronic chips and circuits. The Broader Impacts of the project include strengthening of the graduate program in Materials Science and Engineering in one of the nation's largest historically black university. The project enriches education and training of graduate and undergraduate students from underrepresented minority groups by involving them in cutting-edge research activities. Outreach visits to local high schools with high minority enrollment are designed to promote the value of education in the science, technology, engineering and mathematics (STEM) disciplines.Strong modification of optical electric and magnetic fields in close vicinity of plasmonic nanostructures provides multiple opportunities for fundamental studies and applications. While the effects associated with electric field enhancement are the subject of numerous studies, the effects and opportunities related to modifications in optical magnetic fields remain largely unexplored. The main goals of the project are (i) better understanding of the fundamental properties of optical magnetic dipoles in nanostructured engineered environments, and (ii) development of approaches for control and enhancement of magnetic dipole emission with modified optical environments. In the course of the project, the investigators synthesize organic systems with rare earth ions having magnetic dipole transitions in the optical range, and explore their optical behavior in various local optical environments, including resonant nanostructures. The project is also aimed at new characterization methods allowing one to probe and map optical electric and magnetic fields at the nanoscale, which is important for further development of optical nano sources and metamaterials. In addition, luminescent organic systems with rare earth metal ions developed in the course of the project are of interest for various fundamental and applied studies in nanophotonics and optoelectronics. On the other hand, the project expands the research capabilities and enhances the Materials Science and Engineering graduate program at Norfolk State University, one of the largest HBCUs in the nation. This research enriches education and training of graduate and undergraduate students from underrepresented minority groups and promotes STEM education in local high schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光是一种电磁波,既有电的成分,又有磁的成分。然而,当光与物质相互作用时,通常只有其电子组件能够相互作用。该项目的重点是研究由所谓的稀土离子发射的光,稀土离子具有与光的电和磁成分相互作用的独特能力。这种“双重相互作用”使得能够对这些材料中的光进行额外的控制。特别是,研究人员研究了光的电和磁成分与各种纳米图案光学材料的相互作用。这有助于人们获得知识,从而开发具有更高分辨率的显微镜,先进的生物和化学传感器以及超快电子芯片和电路。该项目的更广泛的影响包括加强在全国最大的历史上的黑人大学之一的材料科学与工程的研究生课程。该项目丰富了对来自代表性不足的少数群体的研究生和本科生的教育和培训,让他们参与尖端研究活动。对少数民族入学率高的当地高中进行外展访问,旨在促进科学,技术,工程和数学(STEM)学科教育的价值。等离子体纳米结构附近的光电场和磁场的强烈修改为基础研究和应用提供了多种机会。虽然与电场增强相关的影响是许多研究的主题,但与光磁场中的修改相关的影响和机会在很大程度上仍未被探索。该项目的主要目标是:(一)更好地了解纳米结构工程环境中光学磁偶极子的基本特性,以及(二)开发控制和增强磁偶极子发射的方法。在该项目的过程中,研究人员合成了具有光学范围内磁偶极跃迁的稀土离子的有机系统,并探索了它们在各种局部光学环境中的光学行为,包括共振纳米结构。该项目还旨在研究新的表征方法,使人们能够探测和绘制纳米级的光电场和磁场,这对于进一步开发光学纳米源和超材料非常重要。此外,在该项目过程中开发的具有稀土金属离子的发光有机系统对于纳米光子学和光电子学的各种基础和应用研究都很有意义。另一方面,该项目扩大了研究能力,提高了诺福克州立大学的材料科学与工程研究生课程,该大学是全国最大的HBCU之一。这项研究丰富了教育和培训的研究生和本科生的代表性不足的少数群体,并促进STEM教育在当地高中。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Fabry-Perot Cavities on Concentration Quenching
法布里-珀罗腔对浓度淬火的影响
  • DOI:
    10.1364/cleo_at.2019.jth2a.20
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koutsares, S.;Prayakarao, S.;Courtwright, D.;Bonner, C. E.;Noginov, M. A.
  • 通讯作者:
    Noginov, M. A.
Development of Near-Infrared Rare Earth Doped Organic Materials for Nanophotonics Applications
用于纳米光子学应用的近红外稀土掺杂有机材料的开发
  • DOI:
    10.1364/cleo_qels.2019.fth4m.6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asane, J. K.;Bullock, A.;Clemmons, M.;Noginova, N.;Noginov, M. A.
  • 通讯作者:
    Noginov, M. A.
Emission in Fabry-Perot Cavities in Weak and Strong Coupling Regimes
弱耦合和强耦合状态下法布里-珀罗腔中的发射
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Faruk, M.O.;Jerop, J.;A. Noginov, M. A.
  • 通讯作者:
    A. Noginov, M. A.
Extreme sensitivity of plasmon drag to surface modification
  • DOI:
    10.1088/1361-6463/abba93
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Ronurpraful;N. Jerop;A. Koech;K. Thompson;N. Noginova
  • 通讯作者:
    T. Ronurpraful;N. Jerop;A. Koech;K. Thompson;N. Noginova
Plasmon drag effect with sharp polarity switching
  • DOI:
    10.1088/1367-2630/ab7d7c
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    T. Ronurpraful;D. Keene;N. Noginova
  • 通讯作者:
    T. Ronurpraful;D. Keene;N. Noginova
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalia Noginova其他文献

Probing magnetization with photovoltage
用光电压探测磁化强度
Magnetically dependent photovoltages in permalloy films and gratings
坡莫合金薄膜和光栅中磁依赖的光电压
  • DOI:
    10.1038/s41598-025-85817-2
  • 发表时间:
    2025-01-20
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Md Afzalur Rab;David W. Keene;Sean Nesbit;Terence Baker;Natalia Noginova
  • 通讯作者:
    Natalia Noginova

Natalia Noginova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalia Noginova', 18)}}的其他基金

Acquisition of the EMX-plus EPR Spectrometer
购买 EMX-plus EPR 光谱仪
  • 批准号:
    2215713
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Rhode Island Hospital Injury Control Center for Biomedical Research Excellence (COBRE)
罗德岛医院伤害控制卓越生物医学研究中心 (COBRE)
  • 批准号:
    10598059
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Rhode Island Hospital Injury Control Center for Biomedical Research Excellence (COBRE)
罗德岛医院伤害控制卓越生物医学研究中心 (COBRE)
  • 批准号:
    10331943
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Canada Research Excellence Chair in Biology and Control of Zoonotic and Pandemic Respiratory Viruses
加拿大人畜共患病和流行性呼吸道病毒生物学与控制研究卓越主席
  • 批准号:
    491929
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Excellence in Research: Actor-Based Modeling and Control of Distributed Networked Autonomous Systems with Fault-Tolerant Protocol Settings
卓越研究:具有容错协议设置的分布式网络自治系统的基于参与者的建模和控制
  • 批准号:
    2053412
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Excellence in Research: Harnessing Microbial Signals for Biofilm Control
卓越的研究:利用微生物信号进行生物膜控制
  • 批准号:
    1955034
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Excellence in Research: Assessing the Control by Multiple Micropredators on Bacterial Communities in Estuarine Environments and Characterization of Prey Lysis Products Resulting fr
卓越的研究:评估多种微捕食者对河口环境中细菌群落的控制以及由此产生的猎物裂解产物的表征
  • 批准号:
    1948758
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Excellence in Research: Co-axial Flow Mixing and Control using Ultra-High Frequency Actuators
卓越的研究:使用超高频执行器的同轴流混合和控制
  • 批准号:
    1900177
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Centre of Research Excellence in Tuberculosis Control on both sides of our border.
我们边境两侧的结核病控制卓越研究中心。
  • 批准号:
    nhmrc : GNT1153493
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Centres of Research Excellence
Excellence in Research: Developing a Robust, Distributed, and Automated Sensing and Control System for Smart Agriculture
卓越的研究:为智能农业开发稳健的分布式自动化传感和控制系统
  • 批准号:
    1832110
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Centre for Research Excellence in Cervical Cancer Control (C4)
宫颈癌控制卓越研究中心 (C4)
  • 批准号:
    nhmrc : 1135172
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Centres of Research Excellence
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了