RII Track-4: Using STM to Examine the Origin of Biological Homochirality in Amino Acids from Ultra-High Vacuum to Liquid Environments

RII Track-4:使用 STM 检查从超高真空到液体环境中氨基酸的生物同手性起源

基本信息

  • 批准号:
    1833019
  • 负责人:
  • 金额:
    $ 12.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Description This project focuses on elucidating fundamental science on the surfaces of amino acids by comparing characterizations under carefully controlled conditions with those closer to real-world conditions. In line with NSF's mission, this project will lead to a deeper understanding of how small, prebiotic molecules interact with surfaces and participate in the emergence of biologically applicable precursors. On a fundamental level, this project will study how amino acid molecules interact and how those interactions correlate to biologically relevant structures like proteins. Importantly, the association of single-molecule studies performed on a high-end microscope (low temperature, high vacuum) with studies performed on a less-ideal microscope (room temperature, typical atmospheric pressure) is both novel and essential to studying biologically relevant systems. While single molecule studies are often performed in pristine conditions, it is rare that those studies are combined with the same systems in the real-world. Research outcomes will make significant contributions to our understanding of prebiotic molecules and the evolution of those molecules on metallic surfaces. The findings of this research will be used at educational events to demonstrate how fundamental science can be used to make broader predictions about amino acids and the beginning of biologically-active molecules on this planet. Technical Description The preference for a specific handedness of biological molecules has long intrigued scientists. The question of how chiral symmetry was broken and subsequently biased towards left-handed molecules is central to the understanding of the origin of life on this planet. As a step towards understanding such processes, the assembly of individual molecules on surfaces can be studied with modern surface science techniques. Low-temperature, ultra-high vacuum, scanning tunneling microscopy (LT-UHV STM) will be used to capture exact molecular arrangements, which will then be coupled with liquid and electrochemical STM (EC-STM) to replicate biological conditions for model systems such as amino acids on metals. In addition to imaging molecular self-assembly with nanoscale resolution, STM images will be used to understand chiral propagation and recognition, which is directly applicable to origin of life studies. Beyond the transfer of chirality, these biological systems are relevant for the study of the preference for secondary structures by different amino acid residues. In order to study these systems, several research objectives are proposed: (1) Establish a baseline for molecular assembly and how molecular adsorption alters the underlying metal substrate in UHV. (2) Use ambient, liquid, and EC-STM to determine if the observed UHV behavior can be extended to more realistic conditions. (3) Investigate how the chirality of L-amino acids is transmitted across a 2D surface in UHV. This proposal addresses the critical need to ascertain a connection between model chiral surface studies and studies performed with similar resolution under relevant biochemical conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述本项目的重点是通过比较在严格控制的条件下与接近真实世界条件下的表征来阐明氨基酸表面的基础科学。根据NSF的使命,该项目将导致更深入地了解小的益生元分子如何与表面相互作用,并参与生物适用前体的出现。在基础层面上,该项目将研究氨基酸分子如何相互作用,以及这些相互作用如何与蛋白质等生物相关结构相关。重要的是,在高端显微镜(低温,高真空)上进行的单分子研究与在不太理想的显微镜(室温,典型的大气压)上进行的研究的关联对于研究生物相关系统来说既新颖又重要。虽然单分子研究通常在原始条件下进行,但这些研究很少与现实世界中的相同系统相结合。 研究成果将为我们理解益生元分子以及这些分子在金属表面上的进化做出重大贡献。这项研究的结果将用于教育活动,以展示基础科学如何用于对氨基酸和地球上生物活性分子的开始进行更广泛的预测。生物分子对特定手性的偏好长期以来一直吸引着科学家。手征对称性是如何被打破并随后偏向左手分子的问题是理解这个星球上生命起源的核心。作为理解这些过程的一个步骤,可以用现代表面科学技术来研究表面上单个分子的组装。低温,超高真空,扫描隧道显微镜(LT-UHV STM)将用于捕获精确的分子排列,然后将其与液体和电化学STM(EC-STM)耦合,以复制模型系统的生物条件,例如金属上的氨基酸。除了以纳米级分辨率成像分子自组装外,STM图像还将用于了解手性传播和识别,这直接适用于生命起源的研究。除了手性的转移之外,这些生物系统与研究不同氨基酸残基对二级结构的偏好有关。为了研究这些系统,提出了几个研究目标:(1)建立分子组装的基线,以及分子吸附如何改变超高真空下的金属基底。(2)使用环境、液体和EC-STM来确定观察到的UHV行为是否可以扩展到更现实的条件。(3)研究L-氨基酸的手性如何在UHV的二维表面上传输。 该提案解决了确定模型手性表面研究和相关生化条件下以类似分辨率进行的研究之间的联系的迫切需要。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extreme atomic-scale surface roughening: Amino acids on Ag on Au(111)
极端原子级表面粗糙化:Au(111) 上 Ag 上的氨基酸
  • DOI:
    10.1116/6.0001396
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Boyd, Kennedy P. S.;Cook, Emily A.;Paszkowiak, Maria A.;Iski, Erin V.
  • 通讯作者:
    Iski, Erin V.
Effect of temperature on the amino acid-assisted formation of metal islands
温度对氨基酸辅助金属岛形成的影响
  • DOI:
    10.1116/1.5141754
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Boyd, Kennedy P. S.;Phillips, Jesse A.;Paszkowiak, Maria A.;Everett, Kassidy K.;Cook, Emily A.;Iski, Erin V.
  • 通讯作者:
    Iski, Erin V.
Formation of magic gold fingers under mild and relevant experimental conditions
  • DOI:
    10.1016/j.susc.2019.04.005
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Phillips,Jesse A.;Boyd,K. P.;Iski,Erin V.
  • 通讯作者:
    Iski,Erin V.
Using EC-STM to obtain an understanding of amino acid adsorption on Au(111)
使用 EC-STM 了解 Au(111) 上的氨基酸吸附
  • DOI:
    10.1063/1.5116564
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Phillips, Jesse A.;Boyd, K. P.;Baljak, I.;Harville, L. K.;Iski, Erin V.
  • 通讯作者:
    Iski, Erin V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erin Iski其他文献

Erin Iski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
  • 批准号:
    2327469
  • 财政年份:
    2024
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
  • 批准号:
    2327253
  • 财政年份:
    2024
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: One-Stage Electrocatalytic CO2 Reduction by Using Captured (bi)Carbonate Ions as the Feedstock
RII Track-4:NSF:使用捕获的碳酸根离子作为原料进行一级电催化 CO2 还原
  • 批准号:
    2327308
  • 财政年份:
    2023
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
  • 批准号:
    2346036
  • 财政年份:
    2023
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Insights into Pathogenicity of Chlorine-Stressed Bacteria Using Combined In Vitro Assays and Metatranscriptomics
RII Track-4:NSF:结合体外测定和宏转录组学深入了解氯胁迫细菌的致病性
  • 批准号:
    2229735
  • 财政年份:
    2023
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Unravelling Gating Mechanisms of Ion Channels Using Computational and Experimental Ultrafast Vibrational Spectroscopy
RII Track-4:NSF:利用计算和实验超快振动光谱揭示离子通道的门控机制
  • 批准号:
    2229651
  • 财政年份:
    2023
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: The Monitoring of Invasive Yellow Sweet Clover Using Landsat/Sentinel-2, UAV Imagery and Machine Learning
RII Track-4:NSF:利用 Landsat/Sentinel-2、无人机图像和机器学习监测入侵的黄花苜蓿
  • 批准号:
    2229746
  • 财政年份:
    2023
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
RII Track-4 NSF: Robust, Predictive, and Learning Guidance Algorithms for On-Orbit Servicing and Assembly Using Multiple Space Systems
RII Track-4 NSF:使用多个空间系统进行在轨维修和组装的稳健、预测和学习制导算法
  • 批准号:
    2229756
  • 财政年份:
    2023
  • 资助金额:
    $ 12.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了