NCS-FO: Integrating Non-Invasive Neuroimaging and Educational Data Mining to Improve Understanding of Robust Learning Processes
NCS-FO:整合非侵入性神经影像和教育数据挖掘,以提高对稳健学习过程的理解
基本信息
- 批准号:1835307
- 负责人:
- 金额:$ 66.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From elementary school math games to workplace training, computer-based learning applications are becoming more widespread. With these programs, it becomes increasingly possible to use the data generated, such as correct and incorrect problem-solving responses, to develop ways to test for student knowledge and to personalize instruction to student needs. The logs of student responses can capture answers, but they fail to capture critical information about what is happening during pauses between student interactions with the software. This project, led by a team of researchers at Arizona State University and Worcester Polytechnic Institute, will explore the use of measurements of brain activity from lightweight brain sensors alongside student log data to understand important mental activities during learning. The study will examine developmental math learning in college and community college students using the ASSISTments intelligent tutoring system. Using brain imaging, the project team will examine whether students are thinking deeply about the problem or mind-wandering during pauses in the learning tasks and use the combined log and brain data to make predictions about learning outcomes. This work will build a foundation for new methods of combining neuroimaging, machine learning, and personalized learning environments. With a better understanding of when and how learning occurs during pauses in tutoring system use, learning technology researchers and developers will be able to create adaptive interventions within tutoring systems that are better personalized to the needs of the individual. This project is funded by Integrative Strategies for Understanding Neural and Cognitive Systems (NSF-NCS), a multidisciplinary program jointly supported by the Directorates for Computer and Information Science and Engineering (CISE), Education and Human Resources (EHR), Engineering (ENG), and Social, Behavioral, and Economic Sciences (SBE).This project has of three goals: 1) Integrating multiple data streams for the creation of an interdisciplinary corpus; 2) Detecting real-time changes in cognitive states during pauses in log data; and 3) Predicting learning outcomes from brain-based and log-based inferences of cognitive states. In addressing these goals, the team will collect brain data, using functional near-infrared spectroscopy neuroimaging, and behavioral data from controlled, well-understood tasks related to rule learning and mind wandering and from authentic learning tasks. Cognitive neuroscience research involving recordings of brain activity traditionally requires paradigms with highly constrained stimuli, timing, and task requirements, whereas research in complex real-world environments such as tutoring systems rarely align with these paradigms. Features of the brain activity during the cognitive tasks will be used to make inferences about student cognition during authentic learning tasks. In addition, brain features will be combined with log data features to create machine learning models that make accurate predictions of student robust learning outcomes, to be assessed using a posttest given after students use the interactive learning environment. Contributions of this project to STEM learning will include improved understanding of how students build knowledge in response to instructional events within digital learning environments, the construction of better predictive models of when students learn from the use of personalized learning environments, and a mapping between learning processes and the length and context of pauses. This project will also contribute to understandings of how to combine analyses of neuroimaging data and log data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从小学数学游戏到职场培训,基于计算机的学习应用正变得越来越普遍。有了这些程序,越来越有可能使用生成的数据,如正确和不正确的解决问题的反应,开发测试学生知识和个性化教学的方法,以满足学生的需求。学生响应的日志可以捕获答案,但它们无法捕获有关学生与软件交互之间暂停期间发生的事情的关键信息。该项目由亚利桑那州立大学和伍斯特理工学院的一组研究人员领导,将探索使用轻量级大脑传感器测量大脑活动以及学生日志数据,以了解学习期间重要的心理活动。本研究将探讨发展性数学学习在大学和社区大学的学生使用ASSISTments智能辅导系统。使用大脑成像,项目团队将检查学生是否在学习任务暂停期间深入思考问题或走神,并使用组合日志和大脑数据来预测学习结果。这项工作将为结合神经成像,机器学习和个性化学习环境的新方法奠定基础。通过更好地了解在辅导系统使用暂停期间学习何时以及如何发生,学习技术研究人员和开发人员将能够在辅导系统中创建自适应干预措施,这些干预措施更好地个性化以满足个人需求。该项目由理解神经和认知系统的综合策略(NSF-NCS)资助,该项目是由计算机和信息科学与工程(CISE),教育和人力资源(EHR),工程(ENG)和社会,行为和经济科学(SBE)董事会共同支持的多学科计划。该项目有三个目标:1)整合多个数据流以创建跨学科语料库; 2)检测日志数据暂停期间认知状态的实时变化;以及3)从基于大脑和基于日志的认知状态推断预测学习结果。为了实现这些目标,该团队将使用功能性近红外光谱神经成像技术收集大脑数据,并从与规则学习和走神相关的受控、充分理解的任务以及真实学习任务中收集行为数据。涉及大脑活动记录的认知神经科学研究传统上需要具有高度约束的刺激,时间和任务要求的范式,而在复杂的现实世界环境中的研究,如辅导系统,很少与这些范式保持一致。在认知任务期间的大脑活动的特征将被用来对真实学习任务期间的学生认知进行推断。此外,大脑特征将与日志数据特征相结合,以创建机器学习模型,这些模型可以准确预测学生强大的学习成果,并在学生使用交互式学习环境后使用后测进行评估。该项目对STEM学习的贡献将包括更好地理解学生如何在数字学习环境中构建知识以应对教学事件,构建更好的预测模型,以预测学生何时从个性化学习环境中学习,以及学习过程与停顿的长度和上下文之间的映射。该项目还将有助于理解如何结合联合收割机分析神经影像数据和日志数据。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving HCI with Brain Input: Review, Trends, and Outlook
- DOI:10.1561/1100000078
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:E. Solovey;F. Putze
- 通讯作者:E. Solovey;F. Putze
Understanding HCI Practices and Challenges of Experiment Reporting with Brain Signals: Towards Reproducibility and Reuse
- DOI:10.1145/3490554
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:F. Putze;Susanne Putze;Merle Sagehorn;C. Micek;E. Solovey
- 通讯作者:F. Putze;Susanne Putze;Merle Sagehorn;C. Micek;E. Solovey
Preliminary Steps Towards Detection of Proactive and Reactive Control States During Learning with fNIRS Brain Signals
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Alicia Howell-Munson;Deniz Sonmez Unal;Erin Walker;Catherine M. Arrington;E. Solovey
- 通讯作者:Alicia Howell-Munson;Deniz Sonmez Unal;Erin Walker;Catherine M. Arrington;E. Solovey
Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification
- DOI:10.1088/1741-2552/abd2ca
- 发表时间:2020-12
- 期刊:
- 影响因子:4
- 作者:Ruixue Liu;B. Reimer;Siyang Song;Bruce Mehler;E. Solovey
- 通讯作者:Ruixue Liu;B. Reimer;Siyang Song;Bruce Mehler;E. Solovey
fNIRS-based classification of mind-wandering with personalized window selection for multimodal learning interfaces
- DOI:10.1007/s12193-020-00325-z
- 发表时间:2020-06
- 期刊:
- 影响因子:2.9
- 作者:Ruixue Liu;Erin Walker;Leah Friedman;Catherine M. Arrington;E. Solovey
- 通讯作者:Ruixue Liu;Erin Walker;Leah Friedman;Catherine M. Arrington;E. Solovey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Solovey其他文献
Modeling the phases of rule learning during problem solving with an interactive learning environment
在具有交互学习环境的问题解决过程中对规则学习的阶段进行建模
- DOI:
10.1007/s11257-025-09426-4 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Deniz Sonmez Unal;Erin Solovey;Catherine M. Arrington;Erin Walker - 通讯作者:
Erin Walker
Erin Solovey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin Solovey', 18)}}的其他基金
RET Site: Engineering for People and the Planet: Research Experiences for Teaching Integrated STEM
RET 网站:人类与地球工程:综合 STEM 教学的研究经验
- 批准号:
2055507 - 财政年份:2022
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant
CHS: Medium: Improving Information Accessibility with Sign Language First Technology
CHS:媒介:通过手语优先技术提高信息可访问性
- 批准号:
1901026 - 财政年份:2019
- 资助金额:
$ 66.42万 - 项目类别:
Continuing Grant
相似国自然基金
影像分型预测HAIC-FO优势肝癌人群及影
像基因组学的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
ATP合酶Fo基团在酸性环境的生理活性及其作用机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
- 批准号:82304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
- 批准号:32202832
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
GRACE-FO微波测距系统原始数据处理、噪声分析与评估
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
利用GRACE-FO和中国重力卫星协同探测时变重力场和质量分布变化
- 批准号:42061134010
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
联合GRACE/GRACE-FO和GNSS形变数据反演连续精细的区域地表质量变化
- 批准号:41974015
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
複数のFoトルク発生ユニットを持つATP合成酵素の創出
使用多个 Fo 扭矩产生单元创建 ATP 合酶
- 批准号:
24K01987 - 财政年份:2024
- 资助金额:
$ 66.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant
NCS-FO: Understanding the computations the brain performs during choice
NCS-FO:了解大脑在选择过程中执行的计算
- 批准号:
2319580 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant
NCS-FO: Uncovering Dynamics of Neural Activity of Subjective Estimation of Time
NCS-FO:揭示主观时间估计的神经活动动态
- 批准号:
2319518 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Continuing Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2327217 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
- 批准号:
2350329 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Standard Grant