Collaborative Research: NCS-FO: Dynamic Brain Graph Mining

合作研究:NCS-FO:动态脑图挖掘

基本信息

  • 批准号:
    2319450
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Mapping the connections in human brains as networked systems, i.e., brain graphs, has become a pervasive paradigm in neuroscience. In cognitive development, aging, and disease, it is crucial to understand how the structures and functions of the brain change over time to provide insights into individual differences and the mechanisms underlying different behaviors and disorders. Traditional models, however, mostly treat the brain graphs as “static,” ignoring the underlying changes over time. This project aims to develop new methods for modeling the dynamics of brain graphs that are robust in generating accurate, interpretable, and fair predictions. This interdisciplinary project will provide a unique mix of training for the participating researchers, and the research findings will be incorporated into education. The investigators will disseminate their findings through an established benchmark platform, new publications, tutorials, and collaborations with domain experts.This project seeks to overcome the barriers of existing static brain graph models and develop practical foundations and computational tools for processing and analyzing complex brain graphs derived from dynamic neuroimaging data. The project will develop a unified framework of Brain Graph Ordinary Differential Equations (BrainGDE) interweaving advanced deep graph learning techniques and ordinary differential equations, addressing the challenges of data complexity, model interpretability, fairness and trustworthiness, as well as clinical transformation. Planned research tasks will focus on: (1) unimodal dynamic brain graph mining, (2) multimodal dynamic brain graph mining, and (3) clinical investigations, in collaboration with domain experts. If successful, this research will reshape deep learning approaches for temporal data mining in bioinformatics and healthcare technologies. The dynamic graph mining framework established in this project will also guide research on the problems of sensing, knowledge discovery, reasoning, and inference on high-dimensional dynamic data with structures and will serve as a universal benchmark for future work in this direction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将人脑中的连接映射为网络系统,即,脑图,已经成为神经科学中一个普遍的范例。在认知发展,衰老和疾病中,了解大脑的结构和功能如何随时间变化,以深入了解个体差异以及不同行为和疾病的机制至关重要。然而,传统的模型大多将大脑图视为“静态”,忽略了随着时间的推移而发生的潜在变化。该项目旨在开发新的方法来模拟脑图的动态,这些方法在生成准确,可解释和公平的预测方面是强大的。这一跨学科项目将为参与的研究人员提供独特的培训组合,研究成果将纳入教育。研究人员将通过一个已建立的基准平台、新的出版物、教程以及与领域专家的合作来传播他们的研究结果。该项目旨在克服现有静态脑图模型的障碍,并为处理和分析来自动态神经影像数据的复杂脑图开发实用基础和计算工具。该项目将开发一个脑图常微分方程(BrainGDE)的统一框架,将高级深度图学习技术和常微分方程交织在一起,解决数据复杂性、模型可解释性、公平性和可信度以及临床转型等挑战。计划的研究任务将集中在:(1)单峰动态脑图挖掘,(2)多模态动态脑图挖掘,(3)临床研究,与领域专家合作。如果成功,这项研究将重塑生物信息学和医疗保健技术中时态数据挖掘的深度学习方法。本项目建立的动态图挖掘框架也将指导感知、知识发现、推理、该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Zhan其他文献

Nanofibers with MoS<sub>2</sub> nanosheets encapsulated in carbon as a binder-free anode for superior lithium storage
  • DOI:
    10.1016/j.carbon.2018.12.074
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiu Zhang;Ya-kai Deng;Yan-li Wang;Liang Zhan;Shu-bin Yang;Yan Song
  • 通讯作者:
    Yan Song
Modifying the aluminum current collector/active material layer interface through physical vapor deposition technology to achieve a high-performance sulfur cathode
通过物理气相沉积技术修饰铝集流体/活性材料层界面以实现高性能硫阴极
  • DOI:
    10.1016/j.electacta.2025.146562
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Xuliang Fan;Fang Chen;Gaowei Zhang;Liang Zhan;Xunfu Zhou;Xiaosong Zhou;Ji Cheng Ding;Jing Li;Jun Zheng
  • 通讯作者:
    Jun Zheng
A high strength carbon nanofiber/honeycomb cordierite composite produced chemical vapor deposition
  • DOI:
    10.1016/j.carbon.2012.04.022
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yan-li Wang;Xu-jian Wang;Liang Zhan;Wen-ming Qiao;Xiao-yi Liang;Li-cheng Ling
  • 通讯作者:
    Li-cheng Ling
Effect of pre-oxidation on microcracks in graphite foams
  • DOI:
    10.1016/j.carbon.2010.08.021
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Li;Can Wang;Cui-cui Zhang;Liang Zhan;Wen-ming Qiao;Xiao-yi Liang;Li-Cheng Ling
  • 通讯作者:
    Li-Cheng Ling
Constructing asymmetric unsaturated copper coordination in Zinc(II)/Copper(I, II)-based metal-organic framework toward productive COsub2/sub-to-methanol photocatalytic conversion from COsub2/sub-capturing solution
构建基于锌(II)/铜(I,II)的金属有机框架中的不对称不饱和铜配位,以实现从捕获二氧化碳溶液中高效地将二氧化碳转化为甲醇的光催化反应
  • DOI:
    10.1016/j.apcata.2022.118970
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Kongguo Wu;Chuanlei Liu;Yuxiang Chen;Hao Jiang;Qilong Peng;Yu Chen;Diyi Fang;Benxian Shen;Qiumin Wu;Liang Zhan;Weizhen Sun; Di Wu;Hui Sun
  • 通讯作者:
    Hui Sun

Liang Zhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Zhan', 18)}}的其他基金

CAREER: Brain Imaging Genetics via multimodal modular structure querying
职业:通过多模式模块化结构查询进行脑成像遗传学
  • 批准号:
    2045848
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319406
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319451
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2319493
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319617
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319449
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319618
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
  • 批准号:
    2350329
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319405
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了