Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
基本信息
- 批准号:2350329
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cognitive tasks such as decision-making are performed by different subjects in different ways. An important manifestation of this subject-to-subject variability is through spontaneous movements during task performance. For example, people may tap the floor or move their eyes while learning a cognitive task; similarly, mice display idiosyncratic whisker, facial, or other movements. Since both spontaneous movements and cognitive tasks modulate cortical activity, modeling and interpreting neural activity during decision-making is a major challenge. Deciphering the function and quantifying the neural origin of spontaneous movements while explicitly modeling individual neural dynamics is a crucial first step in understanding the neural basis of cognitive behaviors. Elucidating the role of spontaneous movements in cognition will also be important for assessing and developing novel therapies for neurobehavioral disorders such as attention deficit hyperactivity disorder.It has not been possible to fully understand large-scale neural and behavioral data during cognitive tasks because neural activity is strongly modulated by movements during the task, and the effect of spontaneous, uninstructed movements on learning and cognition is not well understood. A significant challenge in disentangling the neural dynamics related to movements from those related to cognitive tasks is the presence of subject-to-subject variability. Traditionally, the variability is resolved by focusing on the representations that are present across a large number of subjects. In contrast, this study will explicitly model spontaneous movements and subject-to-subject variability by decoupling it from the across-subject part of the task. Specifically, this project will leverage across-subject similarity in neural activity in mice by learning subject-independent dynamical models, while separately quantifying subject-specific dynamics. Furthermore, the next generation of neurostimulation algorithms should not require extensive training on each subject. For this goal, this project will use a trained across-subject model as the initial model for new subjects, while refining it further with individual data. This transfer learning approach will lead to effective model-based control strategies to design closed-loop neurostimulation. In an integrative computational and experimental approach, these models will be used to investigate the contribution of high-dimensional cortical activity to spontaneous movements and cognitive tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不同的主体以不同的方式完成决策等认知任务。这种受试者之间的变异性的一个重要表现是通过任务执行过程中的自发运动。例如,人们在学习认知任务时可能会轻拍地板或移动眼睛;同样,老鼠也会表现出特殊的胡须、面部或其他动作。由于自发运动和认知任务都会调节皮层活动,因此在决策过程中建模和解释神经活动是一个重大挑战。在明确建模个体神经动力学的同时,破译自发运动的功能并量化其神经起源是理解认知行为神经基础的关键第一步。阐明自发运动在认知中的作用对于评估和开发神经行为障碍(如注意缺陷多动障碍)的新疗法也很重要。在认知任务期间,由于神经活动受到任务期间运动的强烈调制,因此无法完全理解大规模神经和行为数据,并且自发运动的影响,未经指导的动作对学习和认知的影响还不太清楚。将运动相关的神经动力学与认知任务相关的神经动力学分离的一个重大挑战是受试者之间的变异性的存在。传统上,通过关注大量主题中存在的表征来解决可变性。相比之下,本研究将通过将其与任务的跨学科部分解耦来明确地模拟自发运动和受试者间的变异性。具体来说,该项目将通过学习独立于受试者的动力学模型,同时单独量化特定于受试者的动力学,来利用小鼠神经活动的跨受试者相似性。此外,下一代神经刺激算法不应要求对每个受试者进行广泛的培训。为了实现这一目标,该项目将使用经过训练的跨学科模型作为新学科的初始模型,同时使用个体数据进一步完善它。这种迁移学习方法将导致有效的基于模型的控制策略来设计闭环神经刺激。在一个综合的计算和实验的方法,这些模型将被用来调查的贡献,高维皮层活动的自发运动和认知tasks.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shreya Saxena其他文献
Polatuzumab- Rituximab with or without Bendamustine As Second-Line Therapy for Relapsed Refractory Large B-Cell Lymphomas: Single Center Experience
- DOI:
10.1182/blood-2022-163461 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Ariel Perez Perez;Shreya Saxena;Tiba Al Sagheer;Muni Rubens;Talia Zahra;George Nahas;Alex V. Mejia Garcia;Lyle Feinstein;Lisa Reale;Marco Andres Ruiz;Peter L. Citron;Atulya Khosla;Manmeet Ahluwalia;Guenther Koehne;Yuliya P.L. Linhares - 通讯作者:
Yuliya P.L. Linhares
µSim: A goal-driven framework for elucidating the neural control of movement through musculoskeletal modeling
µSim:目标驱动框架,用于通过肌肉骨骼建模阐明运动的神经控制
- DOI:
10.1101/2024.02.02.578628 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Muhammad Noman Almani;John Lazzari;Andrea Chacon;Shreya Saxena - 通讯作者:
Shreya Saxena
CLOCK gene 3’UTR and exon 9 polymorphisms show a strong association with essential hypertension in a North Indian population
- DOI:
10.1186/s12920-024-02056-6 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:2.000
- 作者:
Shreya Sopori;Kavinay Kavinay;Sonali Bhan;Shreya Saxena;Medha Medha;Rakesh Kumar;Arti Dhar;Audesh Bhat - 通讯作者:
Audesh Bhat
Motor deficit and lack of overt dystonia in Dlx conditional Dyt1 knockout mice
Dlx 条件 Dyt1 敲除小鼠的运动缺陷和缺乏明显的肌张力障碍
- DOI:
10.2139/ssrn.4203228 - 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
D. Berryman;Jake Barrett;Canna Liu;C. Maugee;Julien Waldbaum;Daiyao Yi;Hong Xing;F. Yokoi;Shreya Saxena;Yuqing Li - 通讯作者:
Yuqing Li
Shreya Saxena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shreya Saxena', 18)}}的其他基金
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
- 批准号:
2219876 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319619 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2319493 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319617 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319618 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319405 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant