Collaborative Research: HDR: Data-Driven Earth System Modeling

合作研究:HDR:数据驱动的地球系统建模

基本信息

  • 批准号:
    1835860
  • 负责人:
  • 金额:
    $ 249.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-11-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Global weather and climate models represent the atmosphere on computational grids with horizontal spacing of perhaps 100km, stacked in layers which can be over a kilometer thick. Such grids suffice to capture the dynamics of cyclones, fronts, and other large-scale atmospheric phenomena, but these phenomena depend critically on processes with spatial scales much smaller than the grid spacing. The small-scale processes must be represented indirectly, through parameterization schemes which estimate their net impact on the resolved atmospheric state. For example clouds are typically too small for the grid spacing yet they are critical for moving moisture from the ocean surface to the mid-troposphere, thus cloud parameterizations play a key role in determining atmospheric humidity even on the largest spatial scales. Parameterization schemes are inherently approximate, and the development of schemes which produce realistic simulations is a central challenge of model development. Shortcomings in parameterization limit the usefulness of weather and climate models both for scientific research and for societal applications.Most parameterization schemes depend critically on various parameters whose values cannot be determined a priori but must instead be found through trial and error. This task, referred to as "tuning", is laborious as it is performed separately for each parameterization scheme and involves multiple integrations of the model in multiple configurations. It is also inefficient in its use of observations, which is unfortunate given the large amount of observational data available from satellites and other sources. The resulting parameter sets may not be optimal and may produce unexpected results when all the schemes interact with each other in global simulations. Finally, manual tuning is not conducive to uncertainty quantification, which would be valuable for estimating the uncertainty in future climate change projections. The goal of this project is to replace ad hoc manual tuning with a combination of data assimilation, machine learning, and fine-scale process modeling using large eddy simulation (LES) models. LES models have grid spacings of a few tens of meters and can explicitly simulate the clouds and turbulence represented by parameterization schemes. These ingredients are combined to create a global Machine Learning Atmospheric Model (MLAM), in which LES models embedded in selected grid columns of a global model explicitly simulate subgrid-scale processes which are represented by parameterization schemes in the other columns. Machine learning is used to tune the schemes to emulate the behavior of the LES simulations, so that explicit simulations become an online benchmark for parameterization. In this way all the schemes can be tuned together and interactively within a running global simulation. Observational data from a variety of sources is assimilated during the model integration to provide a further constraint on parameter values, and estimates of parameter uncertainty are generated as part of the automated tuning. A similar tuning process is implemented in an ocean general circulation model, and the two are combined to produce a machine learning climate model. Model tuning is generally viewed as a necessary but mundane activity which is not in itself a research topic. But a model capable of learning its parameters from observations and process models offers a new path forward, toward both better models and better ways of using models.The work has broader impacts due to the societal value of better forecasts and projections from weather and climate models. The work directly addresses uncertainty in forecasts and projections used by decision makers to plan for weather and climate impacts. In addition, the modeling strategy developed here is applicable to a broad class of research areas which face the problem of relating large-scale behaviors to small-scale unresolved processes (the problem of relating genotypes to phenotypes in evolutionary biology, for example). In addition, the PIs will establish a cross-disciplinary graduate program on data-driven Earth system modeling. The program bridges the gap between environmental and computational sciences which currently hinders progress in environmental modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球天气和气候模型在水平间距约为100公里的计算网格上表示大气,这些网格堆叠在可能超过一公里厚的层中。这种网格足以捕捉气旋、锋面和其他大尺度大气现象的动力学,但这些现象严重依赖于空间尺度远小于网格间距的过程。小尺度过程必须通过参数方案间接表示,这些方案估计它们对已解析大气状态的净影响。例如,对于网格间距来说,云通常太小,但它们对于将水汽从海洋表面输送到对流层中层是至关重要的,因此,即使在最大的空间尺度上,云参数在确定大气湿度方面也发挥着关键作用。参数化方案本质上是近似的,而开发能够产生逼真模拟的方案是模型开发的核心挑战。参数化的缺点限制了天气和气候模式在科学研究和社会应用中的有效性。大多数参数化方案严重依赖于不同的参数,这些参数的值不能预先确定,而是必须通过反复试验来找到。这项称为“调整”的任务是费时费力的,因为它是针对每个参数化方案单独执行的,并且涉及多种配置中的模型的多个集成。它在使用观测数据方面也效率低下,考虑到卫星和其他来源提供的大量观测数据,这是令人遗憾的。当所有方案在全局模拟中彼此交互时,所得到的参数集可能不是最优的,并且可能产生意外结果。最后,人工调整不利于不确定性的量化,这对于估计未来气候变化预测中的不确定性是有价值的。这个项目的目标是用数据同化、机器学习和使用大涡模拟(LES)模式的精细过程建模的组合来取代特别的手动调整。大涡模拟具有几十米的网格间距,可以显式地模拟由参数化方案表示的云和湍流。将这些因素组合在一起创建了一个全局机器学习大气模型(MLAM),其中嵌入在全局模型的选定网格列中的LES模型显式地模拟了由其他列中的参数化方案表示的亚网格级过程。机器学习被用来调整方案以模拟大涡模拟的行为,从而使显式模拟成为参数化的在线基准。通过这种方式,所有方案都可以在运行的全局模拟中一起并交互地进行调整。来自不同来源的观测数据在模式积分期间被同化,以提供对参数值的进一步约束,并作为自动调整的一部分产生参数不确定性的估计。在海洋环流模式中实施了类似的调整过程,并将两者结合起来产生了一个机器学习气候模式。模型调整通常被认为是一项必要但平凡的活动,本身并不是一个研究课题。但是,能够从观测和过程模型中学习其参数的模型提供了一条新的前进道路,朝着更好的模型和更好的使用模型的方式前进。由于天气和气候模型更好的预报和预测的社会价值,这项工作具有更广泛的影响。这项工作直接解决了决策者用来规划天气和气候影响的预测和预测中的不确定性。此外,这里开发的建模策略适用于广泛的研究领域,这些领域面临着将大规模行为与小规模未解决过程联系起来的问题(例如,进化生物学中将基因类型与表型联系起来的问题)。此外,PIS将建立一个关于数据驱动的地球系统建模的跨学科研究生课程。该计划弥合了环境科学和计算科学之间目前阻碍环境建模进展的鸿沟。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solar geoengineering may not prevent strong warming from direct effects of CO 2 on stratocumulus cloud cover
太阳能地球工程可能无法阻止 CO 2 对层积云层直接影响造成的强烈变暖
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods
  • DOI:
    10.1137/21m1410853
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Dunbar, Oliver R. A.;Duncan, Andrew B.;Wolfram, Marie-Therese
  • 通讯作者:
    Wolfram, Marie-Therese
Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler
  • DOI:
    10.1137/19m1251655
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Garbuno-Iñigo;F. Hoffmann;Wuchen Li;A. Stuart
  • 通讯作者:
    A. Garbuno-Iñigo;F. Hoffmann;Wuchen Li;A. Stuart
Harnessing AI and computing to advance climate modelling and prediction
利用人工智能和计算推进气候建模和预测
  • DOI:
    10.1038/s41558-023-01769-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    30.7
  • 作者:
    Schneider, Tapio;Behera, Swadhin;Boccaletti, Giulio;Deser, Clara;Emanuel, Kerry;Ferrari, Raffaele;Leung, L. Ruby;Lin, Ning;Müller, Thomas;Navarra, Antonio
  • 通讯作者:
    Navarra, Antonio
Seasonal Cycle of Idealized Polar Clouds: Large Eddy Simulations Driven by a GCM
理想化极地云的季节周期:GCM 驱动的大涡模拟
  • DOI:
    10.1029/2021ms002671
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Zhang, Xiyue;Schneider, Tapio;Shen, Zhaoyi;Pressel, Kyle G.;Eisenman, Ian
  • 通讯作者:
    Eisenman, Ian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tapio Schneider其他文献

Uncertainty in climate-sensitivity estimates
气候敏感性估计中的不确定性
  • DOI:
    10.1038/nature05707
  • 发表时间:
    2007-02-28
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Tapio Schneider
  • 通讯作者:
    Tapio Schneider
Correction to: Shallowness of tropical low clouds as a predictor of climate models’ response to warming
  • DOI:
    10.1007/s00382-021-05675-2
  • 发表时间:
    2021-02-03
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Florent Brient;Tapio Schneider;Zhihong Tan;Sandrine Bony;Xin Qu;Alex Hall
  • 通讯作者:
    Alex Hall
Opinion: Optimizing climate models with process-knowledge, resolution, and AI
意见:利用过程知识、分辨率和人工智能优化气候模型
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tapio Schneider;L. R. Leung;Robert C. J. Wills
  • 通讯作者:
    Robert C. J. Wills
Impacts of leaf traits on vegetation optical properties in Earth system modeling
叶片性状对地球系统模型中植被光学特性的影响
  • DOI:
    10.1038/s41467-025-60149-x
  • 发表时间:
    2025-05-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yujie Wang;Renato K. Braghiere;Woodward W. Fischer;Yitong Yao;Zhaoyi Shen;Tapio Schneider;A. Anthony Bloom;David Schimel;Holly Croft;Alexander J. Winkler;Markus Reichstein;Christian Frankenberg
  • 通讯作者:
    Christian Frankenberg
Spanning the Gap From Bulk to Bin: A Novel Spectral Microphysics Method
跨越从散装到料仓的差距:一种新颖的光谱微物理方法

Tapio Schneider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tapio Schneider', 18)}}的其他基金

Midlatitude Storm Track Dynamics on a Cloudy Earth
多云地球上的中纬度风暴路径动力学
  • 批准号:
    1760402
  • 财政年份:
    2018
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Physical Relations Governing the Response of the Global Sea Ice Cover to Climate Change
控制全球海冰覆盖对气候变化响应的物理关系
  • 批准号:
    1107795
  • 财政年份:
    2011
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Type 1 -- LOI02170139: Direct Statistical Approaches to Large-Scale Dynamics, Low Cloud Dynamics, and their Interaction
合作研究:类型 1 -- LOI02170139:大规模动力学、低云动力学及其相互作用的直接统计方法
  • 批准号:
    1048575
  • 财政年份:
    2011
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
The Dynamics of the Hadley Circulation and its Response to a Wide Range of Climate Changes: From a Hierarchy of Models to New Theories
哈德利环流的动态及其对大范围气候变化的响应:从模型层次到新理论
  • 批准号:
    1049201
  • 财政年份:
    2011
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
Dynamical Effects of Water Vapor and on Storm Tracks and their Response to Climate Change
水汽和风暴路径的动力学效应及其对气候变化的响应
  • 批准号:
    1019211
  • 财政年份:
    2010
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2--Multiproxy Reconstructions as A Missing-Data Problem: New Techniques and their Application to Regional Climates of the Past Millennium
合作研究:P2C2——作为缺失数据问题的多代理重建:新技术及其在过去千年区域气候中的应用
  • 批准号:
    1003614
  • 财政年份:
    2010
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
The Ocean-Atmosphere Energy Transport Conference; Pasadena, California; November 5-7, 2009
海洋-大气能源运输会议;
  • 批准号:
    0942890
  • 财政年份:
    2009
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Large-Scale Dynamics and the Maintenance and Variability of the Hydrological Cycle of the Troposphere
对流层水文循环的大尺度动力学与维持与变化
  • 批准号:
    0450059
  • 财政年份:
    2005
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
Global Circulation of the Atmosphere Conference; Pasadena, California; November 4-6, 2004
全球流通大气会议;
  • 批准号:
    0437392
  • 财政年份:
    2004
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
  • 批准号:
    2321574
  • 财政年份:
    2023
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
  • 批准号:
    2242944
  • 财政年份:
    2022
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123237
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123259
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123486
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123260
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123447
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
  • 批准号:
    2122991
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123244
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: DS-PATH: Data Science Career Pathways in the Inland Empire)
合作研究:HDR DSC:DS-PATH:内陆帝国的数据科学职业道路)
  • 批准号:
    2123313
  • 财政年份:
    2021
  • 资助金额:
    $ 249.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了