Element:Software:Enabling Millisecond-Scale Biomolecular Dynamics

元素:软件:实现毫秒级生物分子动力学

基本信息

  • 批准号:
    1835838
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Computer simulation methods based on Molecular Dynamics (MD) have been used for decades to understand chemical and biochemical phenomena at the molecular level. MD is a very powerful tool that has enabled scientists to understand the behavior of molecules crucial for life such as proteins and nucleic acids. MD has also been used to understand diseases and develop new drugs. However, MD is limited in both the size of the systems that can be studied and the amount of time that can be simulated. Many complex phenomena relevant to life involve systems too large to study with MD, or require following the system for much longer times. An alternative to traditional MD called discontinuous molecular dynamics (DMD) has been shown to be much more efficient to study biomolecular processes. To date, however, the use of DMD has been limited due to its inability to take advantage of modern parallel computers. This project will develop a next-generation parallel DMD software that will enable the study of complex molecular phenomena involving larger systems and longer time scales. Detailed knowledge of such processes will considerably advance the development of new materials and drugs, and human health. The project team combines the computational and experimental expertise to successfully develop and validate a robust parallel DMD software framework. The software and results will be actively shared both with the computational simulation community and with the scientific and engineering community at large, contributing to the capability, capacity, and cohesiveness of the national cyber-infrastructure ecosystem. Furthermore, the results of this project will be used in outreach efforts geared toward the education and inclusion of minorities traditionally underrepresented in higher STEM education.This project aims to develop an open software framework that enables multi-millisecond dynamic simulations of peptides and peptide-mimetics by implementing a parallel discontinuous molecular dynamics (DMD) package. Unlike current molecular dynamics (MD), which features limited simulation timescales, discontinuous molecular dynamics (DMD) assumes ballistic motion of the particles between interaction events and enables the study of phenomena across much longer time scales. To demonstrate the approach, the project will (1) develop a parallel version of existing serial DMD codes to enable extending simulation times from hundreds of microseconds to several milliseconds; (2) extend and improve the available DMD peptide force field, adding parameters for non-natural peptides and peptoids; and (3) develop software for translating interaction potentials from traditional MD to DMD. The project team possesses the complementary expertise necessary for this project, including coarse-grained models and force fields for complex polymers and peptoids, MD simulation of protein self-assembly and peptide-protein binding processes, synthesis of protein-binding peptides and peptoids, and measurement of thermodynamic and kinetic binding parameters. The tools resulting from this research will allow the scientific and engineering community to model and study very long time-scale phenomena, such as biopolymer folding, aggregation and inhibition of aggregation, fibril formation, and protein-binding. This toolbox shows great promise to not only accelerate innovation in the computational design of biomaterials, but also to impact the molecular simulation community focusing on highly complex systems, up to cell-level dynamics. Notably, this project is ideal for the National Science Foundation's Cyber-infrastructure for Sustained Scientific Innovation (CSSI), as it (i) contributes to the capability, capacity, and cohesiveness of the national cyberinfrastructure ecosystem by providing user-friendly open-source computational tools, (ii) actively engages CI experts and testers of our toolbox, who would potentially be its ultimate users, (iii) advances our current capabilities in developing bioactive peptides and peptoids, (iv) establishes plans and metrics that encourage measurement of progress and certify the quality of shared tools and results, and (iv) devise strategies to combine wide-access with long-term community-driven development and progress.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于分子动力学(MD)的计算机模拟方法已经被用于在分子水平上理解化学和生物化学现象几十年了。MD是一种非常强大的工具,使科学家能够了解对生命至关重要的分子(如蛋白质和核酸)的行为。MD也被用于了解疾病和开发新药。然而,MD在可研究的系统的大小和可模拟的时间量方面都是有限的。许多与生命相关的复杂现象涉及太大的系统,无法用MD研究,或者需要更长时间的跟踪系统。一种替代传统MD称为不连续分子动力学(DMD)已被证明是更有效地研究生物分子过程。然而,迄今为止,DMD的使用受到限制,因为它无法利用现代并行计算机。该项目将开发下一代并行DMD软件,该软件将能够研究涉及更大系统和更长时间尺度的复杂分子现象。对这些过程的详细了解将大大促进新材料和药物的开发以及人类健康。 该项目团队结合了计算和实验专业知识,成功开发和验证了一个强大的并行DMD软件框架。软件和结果将与计算模拟社区以及整个科学和工程社区积极分享,为国家网络基础设施生态系统的能力,容量和凝聚力做出贡献。此外,该项目的成果将用于面向传统上在高等STEM教育中代表性不足的少数民族的教育和包容的推广工作。该项目旨在开发一个开放的软件框架,通过实施并行的不连续分子动力学(DMD)包,实现肽和肽模拟物的多毫秒动态模拟。与当前的分子动力学(MD)不同,其特征在于有限的模拟时间尺度,不连续分子动力学(DMD)假设相互作用事件之间的粒子的弹道运动,并且能够在更长的时间尺度上研究现象。为了演示该方法,该项目将(1)开发现有串行DMD代码的并行版本,以将模拟时间从数百微秒延长到几毫秒;(2)扩展和改进可用的DMD肽力场,为非天然肽和类肽添加参数;(3)开发用于将相互作用势从传统MD转换为DMD的软件。该项目团队拥有该项目所需的补充专业知识,包括复杂聚合物和类肽的粗粒度模型和力场,蛋白质自组装和肽-蛋白质结合过程的MD模拟,蛋白质结合肽和类肽的合成,以及热力学和动力学结合参数的测量。从这项研究中产生的工具将允许科学和工程界建模和研究非常长的时间尺度的现象,如生物聚合物折叠,聚集和抑制聚集,原纤维形成和蛋白质结合。该工具箱不仅可以加速生物材料计算设计的创新,而且可以影响分子模拟社区,专注于高度复杂的系统,直到细胞级动力学。值得注意的是,该项目是国家科学基金会持续科学创新网络基础设施(CSSI)的理想选择,因为它(i)通过提供用户友好的开源计算工具,为国家网络基础设施生态系统的能力,容量和凝聚力做出贡献,(ii)积极吸引CI专家和我们工具箱的测试人员,他们可能是其最终用户,(iii)提高我们目前开发生物活性肽和类肽的能力,(iv)建立计划和指标,鼓励衡量进展并证明共享工具和结果的质量,及(iv)制订策略,将联合收割机的广泛使用与长期社区服务结合起来,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Enhanced Sampling Simulations to Study the Conformational Space of Chiral Aromatic Peptoid Monomers
  • DOI:
    10.1021/acs.jctc.3c00803
  • 发表时间:
    2023-11-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jain,Rakshit Kumar;Hall,Carol K.;Santiso,Erik E.
  • 通讯作者:
    Santiso,Erik E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Santiso其他文献

Erik Santiso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Santiso', 18)}}的其他基金

CDS&E: Molecular Modeling of Solute Precipitate Nucleation
CDS
  • 批准号:
    1855465
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
  • 批准号:
    2340267
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
  • 批准号:
    2238548
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
  • 批准号:
    EP/Y004310/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
  • 批准号:
    EP/Y004655/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
A software platform enabling rapidly customisable extended reality (XR) training and manufacturing assistance tools
一个支持快速定制扩展现实 (XR) 培训和制造辅助工具的软件平台
  • 批准号:
    10063109
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
  • 批准号:
    EP/Y004191/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
The development of a novel inkjet bioprinter and software operating system, enabling high precision next generation 3D bioprinting.
开发新型喷墨生物打印机和软件操作系统,实现高精度的下一代 3D 生物打印。
  • 批准号:
    10035475
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
An AI-driven customisable software solution that makes EDI data analytics affordable and accessible for SMEs, enabling them to improve diversity
人工智能驱动的可定制软件解决方案,使中小企业能够负担得起且易于使用 EDI 数据分析,从而提高多样性
  • 批准号:
    10035577
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了