CDS&E: Molecular Modeling of Solute Precipitate Nucleation
CDS
基本信息
- 批准号:1855465
- 负责人:
- 金额:$ 32.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Crystallization is a process that plays a crucial role in the production of food products, specialty chemicals, and pharmaceutical molecules but remains poorly understood. For example, many active pharmaceutical ingredients are difficult to crystallize, have poor solubility, or have multiple crystalline forms with different physical properties, yet these properties have a direct impact of the efficacy of the drug. Accordingly, computer models capable of predicting molecular crystallization behavior can be valuable in guiding drug development strategies. The first stages of crystallization involve a process called nucleation, where molecules come together into a solid-like cluster large enough to grow into a crystal. Nucleation typically involves only a few molecules and can be drastically affected by small impurities or defects in surfaces, making it challenging to study experimentally. Nucleation is also directly related to the crystallizability of a drug and to the crystalline form that emerges. With support from the Division of Chemical, Bioengineering, Environmental, and Transport Systems and from the Chemical Theory, Models, and Computational Methods program in the Division of Chemistry, this project will develop new, generally applicable computer simulation methods and software to study the nucleation of crystal molecules from a solution. These methods will be used to study the nucleation of active pharmaceutical ingredients and to understand the role of the solvent and experimental conditions on their crystallization. The software and fundamental understanding developed over the course of the project will yield direct benefits to society through the production of new drugs, advanced materials, and new high-tech jobs. The research will be integrated in outreach efforts geared toward the education and inclusion of minorities traditionally underrepresented in higher STEM education.This project aims to develop new, generally applicable molecular simulation methods to study the nucleation of molecular crystals from solution. These methods will directly model precipitation at constant supersaturation and will explicitly include collective variables measuring the structure of the solvent, rather than just the solute. The methods will be used to study how solvents qualitatively change the nucleation mechanism and to provide a molecular-level explanation for the different precipitation behavior observed in many pairs of chemically similar molecules. Toward this goal, the project will: (1) develop a method to generate order parameters sensitive to the structure of bulk solvents, and use it to analyze data from previous studies on solvent effects on nucleation mechanisms; (2) develop a general method to generate minimum free energy paths for solute precipitation, under constant supersaturation conditions, including order parameters sensitive to solvent structure; and (3) use the new methods to obtain nucleation paths for sulfadiazine and sulfamerazine, two nearly identical molecules with very different crystallization behavior, and elucidate the causes for those differences. The proposed method is a new formulation of the String Method in Collective Variables (SMCV) that can be used in open-system ensembles such as the osmotic, grand canonical, and Gibbs ensembles. The PI (Santiso) has successfully used the SMCV to study the nucleation of pure substances from undercooled melts, and this new formulation will enable modeling solute precipitation under realistic conditions. The tools resulting from this research will enable the scientific and engineering community to simulate and study crystallization using realistic molecular models. This toolbox will accelerate innovation in the computational design of drugs and other solid products. Furthermore, methods and software enabling simulation of activated processes in open systems will enable applications in other areas such as catalysis, separations, and solution chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结晶是一个在食品、特种化学品和药物分子生产中起关键作用的过程,但人们对它的了解仍然很少。例如,许多活性药物成分难以结晶,溶解性差,或具有不同物理性质的多种结晶形式,但这些性质对药物的功效有直接影响。因此,能够预测分子结晶行为的计算机模型在指导药物开发策略方面可能是有价值的。结晶的第一阶段涉及一个称为成核的过程,在这个过程中,分子聚集成一个固体状的簇,大到足以生长成晶体。成核通常只涉及几个分子,并且可能受到表面中小杂质或缺陷的严重影响,这使得实验研究具有挑战性。成核也与药物的结晶性和出现的结晶形式直接相关。在化学,生物工程,环境和运输系统部门以及化学部门的化学理论,模型和计算方法计划的支持下,该项目将开发新的,普遍适用的计算机模拟方法和软件,以研究溶液中晶体分子的成核。这些方法将用于研究活性药物成分的成核作用,并了解溶剂和实验条件对其结晶的作用。在项目过程中开发的软件和基本理解将通过生产新药、先进材料和新的高科技工作岗位为社会带来直接利益。该研究将被整合到面向教育和包容传统上在高等STEM教育中代表性不足的少数民族的外展工作中。该项目旨在开发新的、普遍适用的分子模拟方法,以研究溶液中分子晶体的成核。这些方法将直接模拟恒定过饱和下的沉淀,并明确包括测量溶剂结构的集体变量,而不仅仅是溶质。这些方法将用于研究溶剂如何定性地改变成核机制,并为在许多化学相似分子对中观察到的不同沉淀行为提供分子水平的解释。为实现这一目标,该项目将:(1)开发一种生成对本体溶剂结构敏感的有序参数的方法,并将其用于分析先前关于溶剂对成核机制的影响的研究数据;(2)开发一种通用方法,以生成在恒定过饱和条件下溶质沉淀的最小自由能路径,包括对溶剂结构敏感的有序参数;和(3)使用新方法获得磺胺嘧啶和磺胺甲基嘧啶(两种几乎相同但结晶行为截然不同的分子)的成核路径,并阐明这些差异的原因。所提出的方法是一个新的制定字符串方法在集体变量(SMCV),可用于开放系统合奏,如渗透,巨正则,吉布斯合奏。PI(PICHSO)已经成功地使用SMCV来研究过冷熔体中纯物质的成核,这种新的配方将能够在现实条件下模拟溶质沉淀。这项研究所产生的工具将使科学和工程界能够使用现实的分子模型来模拟和研究结晶。该工具箱将加速药物和其他固体产品的计算机设计创新。此外,方法和软件,使开放系统中的活化过程的模拟将使其他领域的应用,如催化,分离,和溶液化学。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Santiso其他文献
Erik Santiso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Santiso', 18)}}的其他基金
Element:Software:Enabling Millisecond-Scale Biomolecular Dynamics
元素:软件:实现毫秒级生物分子动力学
- 批准号:
1835838 - 财政年份:2018
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Microkinetic Modeling-Driven Discovery of Molecular Catalysts
职业:微动力学模型驱动的分子催化剂发现
- 批准号:
2339481 - 财政年份:2024
- 资助金额:
$ 32.9万 - 项目类别:
Continuing Grant
Characterizing and modeling the genomewide molecular basis of gene-environment interactions
基因-环境相互作用的全基因组分子基础的表征和建模
- 批准号:
10712927 - 财政年份:2023
- 资助金额:
$ 32.9万 - 项目类别:
Beginnings: Introducing Molecular Modeling Experiences to Underrepresented Students
起点:向代表性不足的学生介绍分子建模经验
- 批准号:
2322496 - 财政年份:2023
- 资助金额:
$ 32.9万 - 项目类别:
Cooperative Agreement
Combining Absolute Quantitative Cross-Linking Mass Spectrometry and Molecular Modeling for Probing PROTAC-Mediated Ternary Complex Structures
结合绝对定量交联质谱和分子建模来探测 PROTAC 介导的三元复杂结构
- 批准号:
10572720 - 财政年份:2023
- 资助金额:
$ 32.9万 - 项目类别:
CAREER: Molecular Modeling of Ring Polymer Mechanics - Expanding Applicability of Ring Polymer
职业:环状聚合物力学的分子模拟 - 扩展环状聚合物的适用性
- 批准号:
2236693 - 财政年份:2023
- 资助金额:
$ 32.9万 - 项目类别:
Continuing Grant
Rational PROTAC design enabled by integrated in silico molecular modeling and in vitro biomimetic affinity assessment
通过集成计算机分子建模和体外仿生亲和力评估实现合理的 PROTAC 设计
- 批准号:
10728205 - 财政年份:2023
- 资助金额:
$ 32.9万 - 项目类别:
CAREER: CAS-Climate: Molecular Physical Electrochemistry at Interfaces - Visualizing and Modeling Charge Transfer at the Anode and Cathode
职业:CAS-Climate:界面处的分子物理电化学 - 阳极和阴极的电荷转移可视化和建模
- 批准号:
2142821 - 财政年份:2022
- 资助金额:
$ 32.9万 - 项目类别:
Continuing Grant
Automated particle tracking and stochastic modeling of molecular motion in submicron living systems
亚微米生命系统中分子运动的自动粒子跟踪和随机建模
- 批准号:
RGPIN-2019-06435 - 财政年份:2022
- 资助金额:
$ 32.9万 - 项目类别:
Discovery Grants Program - Individual
Molecular Modeling of Thermodynamic Properties of Fluids and Fluid Mixtures
流体和流体混合物热力学性质的分子模拟
- 批准号:
RGPIN-2018-04212 - 财政年份:2022
- 资助金额:
$ 32.9万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
- 批准号:
2151777 - 财政年份:2022
- 资助金额:
$ 32.9万 - 项目类别:
Continuing Grant