EAGER Real-D: Real-time Data-Based Modeling and Control of Plasma-Enhanced Atomic Layer Deposition
EAGER Real-D:等离子体增强原子层沉积的基于数据的实时建模和控制
基本信息
- 批准号:1836518
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1836518PI: Christofides, Panagiotis D. Next generation electronic devices require the use of improved materials and very precise material processing techniques. To reduce feature sizes and improve energy efficiency, the devices employ extremely thin layers, high aspect ratios, atomically-sharp interfaces, or any combination thereof. Due to inherent difficulties in applying real-time in situ monitoring and control of film properties, factory operators typically rely on batch thin film deposition and etching cycles, followed by scanning electron microscopy (SEM) or x-ray photoelectron spectroscopy (XPS) characterization of the deposited thin films to determine the effect of controllable reactor parameters on the resulting product. This empirical approach reduces productivity and fails to provide complete data on the behavior and operation of chambered reactors common to thin-film processing. Multiscale computational fluid dynamics (CFD) modeling provides a means for addressing these concerns by reducing empiricism and allowing the development of complete data sets that can be used to optimize and control reactor operating conditions in real time. The proposed research is exploratory in nature and focuses on developing a multiscale CFD modeling and control framework that can enable control of thin film manufacturing via plasma-enhanced atomic layer deposition (PE-ALD) to optimize in real time the microstructure of the deposited thin films. CFD models have been shown to capture the complex reaction and transport phenomena present within plasma charged reactors, while microscopic models, typically based on kinetic Monte Carlo (kMC) algorithms, have successfully reproduced the surface features of deposited films. A multiscale CFD model encompassing both domains would represent a significant step forward in understanding of thin-film processing via PE-ALD and could allow for improved real-time online monitoring and control of chambered reactor operations. However, such a model will be unsuitable for the development of real-time optimizers and model-based controllers because CFD simulations are generally computationally demanding and cannot be linked to online model predictive control schemes. Nonetheless, the proposed multiscale CFD model can be used as a risk-free and effective tool to investigate previously unexplored operating conditions of the PE-ALD reactor and create a database which can be utilized to derive a computationally efficient data-driven model for PE-ALD real-time control. The multiscale CFD model which will be developed will allow for the application of a novel, computationally efficient data-based Bayesian artificial neural network (ANN). Furthermore, data-driven models developed using the reactor model will form the basis for real-time process optimization and control. The data-based model will be used to develop real-time operational decision strategies for PE-ALD that reduce thin film layer deposition times, which constitutes a necessary step for adoption of this technology. The proposed methodology can form a basis for real-time optimization and control of next generation deposition systems and may be adapted to a wide range of industrial processes. Dissemination of research results will include web-based access to a database and results repository. In addition to training a PhD student, the PI plans to integrate research results into the curriculum through the inclusion of CFD modeling and its integration with control in the Advanced Process Control course that the PI offers to both graduate and undergraduate UCLA students, as well as through the integration of CFD concepts and tools into the undergraduate numerical methods, process design and process control core courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
CBET-1836518 PI:Christofides,Panagiotis D. 下一代电子设备需要使用改进的材料和非常精确的材料加工技术。为了减小特征尺寸并提高能量效率,器件采用极薄的层、高纵横比、原子级尖锐的界面或其任何组合。由于应用实时原位监测和控制膜性质的固有困难,工厂操作者通常依赖于批量薄膜沉积和蚀刻循环,随后是沉积薄膜的扫描电子显微镜(SEM)或X射线光电子能谱(XPS)表征,以确定可控反应器参数对所得产品的影响。这种经验方法降低了生产率,并且不能提供关于薄膜加工中常见的腔室反应器的行为和操作的完整数据。多尺度计算流体动力学(CFD)建模提供了一种解决这些问题的方法,通过减少非线性,并允许开发完整的数据集,可用于优化和控制反应堆的操作条件,在真实的时间。拟议的研究是探索性的性质,并侧重于开发一个多尺度的CFD建模和控制框架,可以通过等离子体增强原子层沉积(PE-ALD),以优化薄膜制造的控制在真实的时间的沉积薄膜的微观结构。计算流体力学模型已被证明捕捉复杂的反应和传输现象,目前在等离子体充电反应器,而微观模型,通常基于动力学蒙特卡罗(kMC)算法,已成功地再现了沉积膜的表面特征。涵盖这两个领域的多尺度CFD模型将代表通过PE-ALD理解薄膜加工的重要一步,并且可以改进室式反应器操作的实时在线监测和控制。然而,这样的模型将不适合于实时优化器和基于模型的控制器的开发,因为CFD模拟通常需要计算并且不能与在线模型预测控制方案相关联。尽管如此,所提出的多尺度CFD模型可以用作无风险和有效的工具,以调查以前未探索的PE-ALD反应器的操作条件,并创建一个数据库,该数据库可以用于导出用于PE-ALD实时控制的计算高效的数据驱动模型。将开发的多尺度CFD模型将允许应用一种新的、计算效率高的基于数据的贝叶斯人工神经网络(ANN)。此外,使用反应器模型开发的数据驱动模型将成为实时过程优化和控制的基础。基于数据的模型将用于开发PE-ALD的实时操作决策策略,以减少薄膜层沉积时间,这是采用该技术的必要步骤。所提出的方法可以形成下一代沉积系统的实时优化和控制的基础,并且可以适用于广泛的工业过程。研究成果的传播将包括通过网络访问数据库和成果储存库。除了培养一名博士生,PI还计划通过将CFD建模及其与PI为加州大学洛杉矶分校研究生和本科生提供的高级过程控制课程中的控制集成,以及通过将CFD概念和工具集成到本科数值方法中,过程设计和过程控制核心课程。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Christofides其他文献
Panagiotis Christofides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Christofides', 18)}}的其他基金
Cybersecurity in process control: Machine-learning detection and encrypted control
过程控制中的网络安全:机器学习检测和加密控制
- 批准号:
2227241 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Machine Learning for Model Predictive Control of Nonlinear Processes
用于非线性过程模型预测控制的统计机器学习
- 批准号:
2140506 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
UNS: Real-Time Economic Model Predictive Control of Nonlinear Processes
UNS:非线性过程的实时经济模型预测控制
- 批准号:
1506141 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Multiscale Modeling and Control of Thin Film Solar Cell Manufacturing for Improved Light Trapping and Solar Power Conversion
薄膜太阳能电池制造的多尺度建模和控制,以改善光捕获和太阳能转换
- 批准号:
1262812 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Design and Monitoring of Cooperative, Distributed Control Systems for Nonlinear Processes
非线性过程协同分布式控制系统的设计和监控
- 批准号:
1027553 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CPS: Small: Design of Networked Control Systems for Chemical Processes
CPS:小型:化学过程网络控制系统的设计
- 批准号:
0930746 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Control and Monitoring of Microstructural Defects in Thin Film Deposition
薄膜沉积中微观结构缺陷的控制和监测
- 批准号:
0652131 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Sensors: Sensor Malfunctions in Process Control: Analysis, Design and Applications
传感器:过程控制中的传感器故障:分析、设计和应用
- 批准号:
0529295 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ITR: Feedback Control of Thin Film Microstructure Using Multiscale Distributed Models
ITR:使用多尺度分布式模型对薄膜微结构进行反馈控制
- 批准号:
0325246 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Nonlinear Feedback Control of Hybrid Process Systems
混合过程系统的非线性反馈控制
- 批准号:
0129571 - 财政年份:2002
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
- 批准号:
2141473 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151020 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: MEMS Enabled Real Time Detection of Pathogens Viruses and Biomarkers
EAGER:MEMS 实现病原体病毒和生物标记物的实时检测
- 批准号:
2210471 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Development of an Energy-Harvesting Real-time Under-ice Monitoring System in the Arctic Ocean
EAGER:合作研究:北冰洋能量收集实时冰下监测系统的开发
- 批准号:
2134146 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2141008 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant