EAGER: BRAIDING: Lattice engineered nonabelian defects in fractional Chern insulators

渴望:编织:分数陈绝缘体中的晶格工程非阿贝尔缺陷

基本信息

  • 批准号:
    1836776
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract: in the last decade, the possibility of utilizing unusual quantum statistics of emergent states of matter as a basis for quantum computation has gone from being a distant dream to an ambitious but reasonable possibility. Recent advances are based on assembly of required ingredients through proximity effects. In this approach, two materials with complementary properties are placed in close proximity to each other, for example allowing superconductivity to be introduced into materials which have complementary properties. Most prominently, Majorana bound states, the simplest states that can support certain forms of quantum computation, can be engineered by inducing superconductivity in a one-dimensional wire. As the experimental hunt for Majorana bound states intensifies, the question arises as to whether even richer ground states can be realized using the same synthetic approach. This proposal describes a route towards realizing such states in a newly discovered class of topologically ordered metamaterials known as fractional Chern insulators. Remarkably, these class of metamaterials allow the requisite disparate properties to be engineered with single-site resolution in an artificial lattice, opening completely new design principles for quantum devices. Technical Abstract: in the last decade, the possibility of using ground state topological degeneracy as a basis for quantum computation has gone from being a distant dream to an ambitious but reasonable possibility. Recent advances owe much to a shift in focus to a `synthetic' approach. Rather than seeking nonabelian anyons as elementary excitations in 'natural' electronic systems, the disparate ingredients required are assembled through proximity effects. For example, Majorana bound state - the simplest nonabelian defect state - can be engineered by inducing superconductivity in an effectively spinless, one dimensional fermionic wire. As the experimental hunt for Majorana bound states intensifies, the question arises as to whether richer parafermion and Fibonacci anyon ground states can be realized using the same synthetic approach. This proposal describes a route towards realizing nonabelian defects in the recently discovered fractional Chern insulators in graphene heterostructures, including parafermion bound states. Fractional Chern insulators are generalizations of fractional quantum Hall states to lattice systems. Like conventional fractional quantum Hall states, the low-lying charged excitations of gapped fractional Chern insulators have anyonic statistics; however, the lattice degree of freedom endows them with new experimental tunability. Under the current proposal, we will classify fractional Chern insulator ground states in lithographically defined superlattices and use them to Engineer lattice defects and sublattice selective contacts for measurement-only braiding of nonabelian defect states.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:在过去的十年里,利用物质涌现状态的不寻常量子统计作为量子计算基础的可能性已经从一个遥远的梦想变成了一种雄心勃勃但合理的可能性。最近的进展是基于通过邻近效应组装所需的成分。在这种方法中,两种具有互补性质的材料被放置在彼此非常接近的位置,例如,允许在具有互补性质的材料中引入超导电性。最突出的是,可以通过在一维导线中诱导超导来设计Majorana束缚态,这是可以支持某些形式的量子计算的最简单的态。随着对Majorana束缚态的实验性搜寻的加强,出现了一个问题,即是否可以使用同样的合成方法实现更丰富的基态。这项提议描述了一种在一类新发现的拓扑有序的超材料中实现这种状态的途径,这种超材料被称为分数陈绝缘体。值得注意的是,这些超材料允许在人工晶格中以单一位置的分辨率设计出必要的完全不同的特性,为量子设备打开了全新的设计原则。技术摘要:在过去的十年里,利用基态拓扑简并作为量子计算基础的可能性已经从一个遥远的梦想变成了一种雄心勃勃但合理的可能性。最近的进展在很大程度上要归功于将重点转向“综合”方法。与寻找非阿贝尔任意子作为“天然”电子系统的基本激发不同,所需的不同成分是通过邻近效应组装起来的。例如,Majorana束缚态--最简单的非阿贝尔缺陷态--可以通过在实际上没有自旋的一维费米线中诱导超导来实现。随着对Majorana束缚态的实验性搜寻的加强,出现了一个问题,即是否可以使用相同的合成方法来实现更丰富的副费米子和斐波那契任意子基态。这一建议描述了一条在最近发现的石墨烯异质结构中实现非阿贝尔缺陷的途径,包括准费米子束缚态。分数陈绝缘体是分数量子霍尔态在晶格系统中的推广。与传统的分数量子霍尔态一样,带隙分数陈氏绝缘体的低能级电荷激发具有任意子统计特性;然而,晶格自由度赋予了它们新的实验可调性。根据目前的提议,我们将在光刻定义的超晶格中对分数陈氏绝缘体基态进行分类,并使用它们来设计晶格缺陷和亚晶格选择性接触,以仅用于测量编织非阿贝尔缺陷状态。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractional Chern insulator edges and layer-resolved lattice contacts
分数陈绝缘体边缘和层分辨晶格接触
  • DOI:
    10.1103/physrevb.99.081114
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Knapp, Christina;Spanton, Eric M.;Young, Andrea F.;Nayak, Chetan;Zaletel, Michael P.
  • 通讯作者:
    Zaletel, Michael P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Young其他文献

Towards Reducing Diagnostic Errors with Interpretable Risk Prediction
通过可解释的风险预测减少诊断错误
3.18 Can Blood Cell Membrane Potential Ratio (MPR™) Help in the Assessment and Treatment of ADHD?
  • DOI:
    10.1016/j.jaac.2018.09.176
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ekaterina A. Stepanova;Andrea Young;Dana Kaplin;Bernice Frimpong;Sofia Pikalova;Robert L. Findling
  • 通讯作者:
    Robert L. Findling
A prospective randomized trial of the effect of a soluble adhesive on the ease of dressing removal following hypospadias repair
  • DOI:
    10.1016/j.jpurol.2006.08.006
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Caroline Sanders;Andrea Young;Helen F. McAndrew;Simon E. Kenny
  • 通讯作者:
    Simon E. Kenny
The Prediction of Lean Body Mass and Fat Mass From Arm Anthropometry at Diagnosis in Children With Cancer
通过手臂人体测量学预测癌症儿童诊断时的去脂体重和脂肪量
Stability of the Ricci Yang-Mills flow at Einstein Yang-Mills metrics
  • DOI:
    10.4310/cag.2010.v18.n1.a3
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrea Young
  • 通讯作者:
    Andrea Young

Andrea Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Young', 18)}}的其他基金

MACROSCOPIC PHASE COHERENCE FROM SYNTHETIC INTERLAYER COUPLING IN VAN DER WAALS FLAT BANDS
范德瓦尔斯平带中合成层间耦合的宏观相位相干性
  • 批准号:
    2226850
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Building Capacity for Interdisciplinary Quantitative Reasoning Instruction
跨学科定量推理教学能力建设
  • 批准号:
    1822414
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Correlated Topological States in van der Waals Bilayers
职业:范德华双层中的相关拓扑态
  • 批准号:
    1654186
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER: Layer Resolved Capacitance in Graphene Bilayers
EAGER:石墨烯双层中的层分辨电容
  • 批准号:
    1636607
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Center for Braiding Indigenous Knowledges and Science (CBIKS)
编织土著知识和科学中心 (CBIKS)
  • 批准号:
    2243258
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Topological phases by momentum space braiding
动量空间编织的拓扑相
  • 批准号:
    EP/W00187X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Braiding the Environmental and Cultural Importance of Wetlands in Education throughout Mi'kma'ki
将湿地的环境和文化重要性融入整个 Mikmaki 的教育中
  • 批准号:
    577367-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Braiding Opportunities in Training, Advocacy, and Networking for Young Scientists (BOTANY Scientists)
为年轻科学家(植物科学家)提供培训、宣传和网络机会
  • 批准号:
    2216268
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Braiding Operation using SFQ Current Pulses for Topological Quantum Computer
拓扑量子计算机中使用 SFQ 电流脉冲的编织操作
  • 批准号:
    21K18708
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
  • 批准号:
    2104757
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2037996
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了