EAGER: BRAIDING: Demonstration of Topological Qubits Using Non-Abelian Anyons in the Fractional Quantum Hall Effect
EAGER:编织:在分数量子霍尔效应中使用非阿贝尔任意子演示拓扑量子位
基本信息
- 批准号:1836908
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Abstract: There is a demand for a fault-tolerant implementation of quantum information processing that is immune from mistakes that occur during the course of computation. Such an information processor may be built using topological materials as a computing platform. The goal of this project is to demonstrate such a computing platform using states that have been predicted in certain semiconductor devices that realize a unique form of a quantum phenomenon called fractional quantum Hall effect, leading to topological qubit. A successful development of topological qubit can help revolutionize the field of quantum computation and produce a significant speed up of certain types of computations such as an efficient database search and simulation of quantum systems. The research project will help train a new generation of students on the concepts and techniques of an emerging frontier of quantum science. Technical abstract: Topological quantum computing is a potentially enabling technology that has emerged from study of condensed matter physics in recent years. The fractional quantum Hall effect (FQHE), realized in high quality semiconductor structures at low temperatures and high magnetic fields, is a promising template for realization of topological qubit. Quantum information in a topological qubit is stored in non-Abelian anyons which have been predicted for the FQHE states that occurs at 5/2 filling factor. Demonstration of topological qubits based on braiding of non-Abelian anyons of the 5/2 FQHE state is proposed. The goal is to advance the experimental techniques for detection and measurement of low energy excitations that lies at the heart of this emerging paradigm. A successful measurement of the statistical phase angle of anyonic excitations of the FQHE liquids in electronic Fabry-Perot interferometers fabricated from high mobility GaAs/AlGaAs heterostructures will set the stage for the demonstration of topological qubit. A successful demonstration of the logical gates will establish the protected topological qubit in these systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:存在对量子信息处理的容错实现的需求,该容错实现不受在计算过程中发生的错误的影响。这样的信息处理器可以使用拓扑材料作为计算平台来构建。该项目的目标是使用在某些半导体器件中预测的状态来演示这样的计算平台,这些半导体器件实现了称为分数量子霍尔效应的量子现象的独特形式,从而导致拓扑量子位。拓扑量子比特的成功开发可以帮助量子计算领域发生革命性变化,并显着加快某些类型的计算,例如有效的数据库搜索和量子系统的模拟。该研究项目将有助于培养新一代学生对量子科学新兴前沿的概念和技术。技术摘要:拓扑量子计算是近年来从凝聚态物理研究中出现的一种潜在的使能技术。分数量子霍尔效应(Fractional Quantum Hall Effect,简称FQHE)是在低温强磁场下实现的高质量半导体结构,是实现拓扑量子比特的一个很有前途的模板。拓扑量子比特中的量子信息存储在非阿贝尔任意子中,这些任意子已经被预测为在5/2填充因子处发生的Escheriche态。提出了一种基于5/2 π HE态非阿贝尔任意子编织的拓扑量子比特的证明。我们的目标是推进低能量激发的检测和测量的实验技术,这是在这个新兴的范例的核心。在由高迁移率GaAs/AlGaAs异质结构制成的电子法布里-珀罗干涉仪中,成功测量了非线性液体的任意子激发的统计相位角,这将为拓扑量子比特的演示奠定基础。逻辑门的成功演示将在这些系统中建立受保护的拓扑量子位。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Woowon Kang其他文献
Woowon Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Woowon Kang', 18)}}的其他基金
Quantum Coherence and Tunneling in Semiconductor Nanostructures
半导体纳米结构中的量子相干性和隧道效应
- 批准号:
0203679 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
- 批准号:
DP240100168 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Center for Braiding Indigenous Knowledges and Science (CBIKS)
编织土著知识和科学中心 (CBIKS)
- 批准号:
2243258 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Topological phases by momentum space braiding
动量空间编织的拓扑相
- 批准号:
EP/W00187X/1 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Braiding the Environmental and Cultural Importance of Wetlands in Education throughout Mi'kma'ki
将湿地的环境和文化重要性融入整个 Mikmaki 的教育中
- 批准号:
577367-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
PromoScience
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
- 批准号:
567412-2021 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
PromoScience
Braiding Opportunities in Training, Advocacy, and Networking for Young Scientists (BOTANY Scientists)
为年轻科学家(植物科学家)提供培训、宣传和网络机会
- 批准号:
2216268 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Braiding Operation using SFQ Current Pulses for Topological Quantum Computer
拓扑量子计算机中使用 SFQ 电流脉冲的编织操作
- 批准号:
21K18708 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
- 批准号:
567412-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
PromoScience
Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
- 批准号:
2104757 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2037996 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant