NER: Molecular Electronics and Spintronics in Self-Assembled Monolayer Devices

NER:自组装单层器件中的分子电子学和自旋电子学

基本信息

  • 批准号:
    0507952
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

This NER proposal is a collaborative effort among researchers with diverse expertise in Organic Materials Science and Chemistry (Burtman); Optics, Optoelectronics, and Magneto-transport (Vardeny), and device Physics (both). The two co-PI.s have worked together for two years and have successfully built a set-up for growing self-assembled monolayers (SAM). We are therefore experienced in all aspects of the proposed studies. Intellectual Merit: The goal of this proposal is to demonstrate and study electronic and spintronics processes in molecular devices made of SAM mixtures of conducting and insulating molecules with anchoring thiol end groups, upon tailoring the transport process between isolated molecules with 1D-like transport and aggregates with 2D-like transport. SAM diodes will be fabricated from solution mixtures of molecular wires (1,4 benzene-dimethane-thiol, Me-BDT) with two anchoring thiol end groups, and molecular insulators (pentathiol, PT) with one anchoring thiol end group, at different ratio, r of wires/insulators on metallic ferromagnetic (FM) and non-FM electrodes that include gold and cobalt. At r 10-3 the Me-BDT molecules should be isolated in the insulating PT matrix, whereas they would form two-dimensional (2D) aggregates at r 0.1. We propose to check (i) the Me-BDT bonding to the opposite electrodes; (ii) Me-BDT molecular surface density, and (iii) Me-BDT molecular aggregate formation, using titration techniques of molecular tags that are borrowed from other Applied Science subfields. These measurements include optical absorption, vibrational spectroscopy, AFM microscopy, and electrochemical charge counting. Using the fabricated SAM devices we will be able to study the charge transport properties of isolated and aggregated Me-BDT conducting molecules from the device I-V and differential conductance characteristics, measured at different temperatures. In addition spin transport properties of Me-BDT molecules and aggregates will be also obtained using magnetoresistance (MR) measurements, where the I-V characteristic of Co-based SAM devices will be studied as a function of an external magnetic field. From these measurements we expect to be able to clearly separate devices based on isolated molecular wires from those based on 2D molecular wire aggregates; a phase transition at a certain rc value is anticipated. All the necessary equipment for the SAM growth and set-ups for the device fabrication and testing are already in our laboratory. We have obtained preliminary results that show the feasibility of the proposed studies. Broader Impact: These pilot research studies, if successful would show an alternative method of studying charge and spin transport in single molecules, and in molecular aggregates that show charge delocalization, using SAM devices. Our measurements have the potential to substantially advance the molecular electronic field using a reliable measurement technique. In addition the integration of our large arsenal of experimental efforts, including SAM growth, optics, magneto-optics, and device fabrication, processing and testing, will serve to efficiently educate the post-doctoral associate, and graduate and undergraduate students who will be involved in the highly interdisciplinary research projects. This proposal is in the subfield of Nanoscale Devices and System Architecture.
该NER提案是在有机材料科学和化学(Burtman);光学,光电子学和磁传输(Vardeny)以及器件物理(两者)方面具有不同专业知识的研究人员之间的合作努力。这两个合作PI已经合作了两年,并成功地建立了一个用于生长自组装单层(SAM)的装置。因此,我们在拟议研究的各个方面都有经验。 智力优势:该提案的目标是展示和研究电子和自旋电子学过程中的分子器件制成的SAM混合物的导电和绝缘分子与锚定硫醇端基,定制的运输过程与一维的隔离分子和聚集体与二维的运输。 SAM二极管将由具有两个锚定硫醇端基的分子线(1,4苯-二甲烷-硫醇,Me-BDT)和具有一个锚定硫醇端基的分子绝缘体(五硫醇,PT)的溶液混合物以金属铁磁(FM)和包括金和钴的非FM电极上的线/绝缘体的不同比率r制造。在r 10 - 3的Me-BDT分子应隔离在绝缘PT矩阵,而它们将形成二维(2D)的聚集体在r 0.1。我们建议检查(i)Me-BDT键合到相反的电极;(ii)Me-BDT分子表面密度,和(iii)Me-BDT分子聚集体的形成,使用从其他应用科学子领域借来的分子标签的滴定技术。这些测量包括光学吸收、振动光谱、AFM显微镜和电化学电荷计数。 使用所制造的SAM器件,我们将能够研究隔离和聚集的Me-BDT导电分子的电荷传输特性,从器件的I-V和微分电导特性,在不同的温度下测量。 此外,还将使用磁阻(MR)测量获得Me-BDT分子和聚集体的自旋输运性质,其中将研究Co基SAM器件的I-V特性作为外磁场的函数。从这些测量中,我们期望能够清楚地将基于隔离分子线的器件与基于2D分子线聚集体的器件分开;预期在一定的rc值处发生相变。 SAM生长所需的所有设备以及器件制造和测试的设置都已在我们的实验室中。我们已经获得了初步的结果,表明拟议的研究的可行性。 更广泛的影响:这些试点研究,如果成功的话,将显示一种替代的方法,研究电荷和自旋输运在单个分子,并在分子聚集体,显示电荷离域,使用SAM设备。我们的测量有可能使用可靠的测量技术大大提高分子电子场。此外,我们的实验工作,包括SAM增长,光学,磁光,器件制造,加工和测试的大型军火库的整合,将有助于有效地教育博士后助理,研究生和本科生谁将参与高度跨学科的研究项目。 该提案属于纳米器件和系统架构的子领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zeev Valy Vardeny其他文献

Control of light, spin and charge with chiral metal halide semiconductors
用手性金属卤化物半导体控制光、自旋和电荷
  • DOI:
    10.1038/s41570-022-00399-1
  • 发表时间:
    2022-06-27
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Haipeng Lu;Zeev Valy Vardeny;Matthew C. Beard
  • 通讯作者:
    Matthew C. Beard

Zeev Valy Vardeny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zeev Valy Vardeny', 18)}}的其他基金

Magneto-optical quantum excitations and spintronics effects in chiral (CH)x
手性 (CH)x 中的磁光量子激发和自旋电子学效应
  • 批准号:
    2206653
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic
EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学
  • 批准号:
    1836989
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Spin Polarization Spectroscopy in Organic Semiconductors
有机半导体中的自旋偏振光谱
  • 批准号:
    1701427
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Carrier transport in organometal halide perovskite devices
合作研究:有机金属卤化物钙钛矿器件中的载流子传输
  • 批准号:
    1607516
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Spin Response in Organic Semiconductors with Tuned Spin-Orbit Coupling
利用调谐自旋轨道耦合研究有机半导体中的自旋响应
  • 批准号:
    1404634
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FRG: Spin Response in Organic Semiconductors with Tuned Hyperfine Interaction
FRG:具有调谐超精细相互作用的有机半导体中的自旋响应
  • 批准号:
    1104495
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Optical, Electrical and Magnetic Studies of pi-Conjugated Polymer/Organic Acceptor Blends for Photovoltaic Applications
用于光伏应用的 π 共轭聚合物/有机受体混合物的光学、电学和磁学研究
  • 批准号:
    0803325
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
FRG: Study of Pi-Conjugated Organic Semiconductors with Tailored Spin-Orbit Coupling
FRG:利用定制自旋轨道耦合研究 Pi 共轭有机半导体
  • 批准号:
    0503172
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
FRG: Excitation Dynamics and Laser Action in Systems of Pi-Conjugated Materials
FRG:Pi 共轭材料系统中的激发动力学和激光作用
  • 批准号:
    0202790
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Exciton Dynamics and Laser Action in Conducting Polymers
导电聚合物中的激子动力学和激光作用
  • 批准号:
    9732820
  • 财政年份:
    1998
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Creation of quantum molecular electronics by fusion of advanced materials chemistry a nd quantum solid-state physics
通过先进材料化学和量子固体物理学的融合创造量子分子电子学
  • 批准号:
    23K20039
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Efficient construction of 2D and 3D polyaryls for molecular (opto)electronics (Staggarenes)
用于分子(光)电子学的 2D 和 3D 聚芳基化合物的高效构建(Staggarenes)
  • 批准号:
    EP/X023745/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Boron Nitrogen Isostere-Doped Organometallics for Molecular Electronics
用于分子电子学的硼氮等排掺杂有机金属化合物
  • 批准号:
    DP230100215
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
Organic electronics opened up by unique integration methods of functional molecular materials
功能分子材料独特集成方法开辟有机电子学
  • 批准号:
    23K04876
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Engineering of Semiconducting Polymers for Emerging Organic Electronics
用于新兴有机电子的半导体聚合物的分子工程
  • 批准号:
    RGPIN-2022-04428
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
FMSG: BIO: Manufacturing of Molecular-Precision, Scalable 2D Material Memory Array for Future Electronics
FMSG:BIO:用于未来电子产品的分子精度、可扩展 2D 材料存储阵列的制造
  • 批准号:
    2229131
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Harnessing Molecular Simulations to advance Electronics and Photovoltaics
利用分子模拟推进电子和光伏技术的发展
  • 批准号:
    2729676
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Designing Novel Copper pi Systems for Molecular Electronics
为分子电子学设计新型铜 pi 系统
  • 批准号:
    535607-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theory of Molecular Electronics
分子电子学理论
  • 批准号:
    2600291
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Molecular Dyads as a Versatile Platform for Organic Electronics.
分子二元体作为有机电子的多功能平台。
  • 批准号:
    535229-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了