EAGER/Collaborative Research: Real-Time: Hybrid Control Architectures Combining Physical Models and Real-time Learning

EAGER/协作研究:实时:结合物理模型和实时学习的混合控制架构

基本信息

项目摘要

Machine learning has become a focus of many researchers as effective solution to many complex engineering problems. At its core machine learning are the methods that provide computers ways to learn using available data. Artificial neural networks (ANN) have traditionally been the backbone of machine learning methods. While these learning systems certainly have their strengths, they also have limitations in the context of control engineering. For example, physics based models often provide key physical insight into the design of control systems for power grids, autonomous vehicles, and robots. So completely discarding such models in the context of learning based control systems is often counterproductive. This EArly-concept Grant for Exploratory Research (EAGER) project aims to develop a new, foundational and innovative control architecture which combines the advantages of model based design methods with those of real-time learning. The architecture is based on recent advances in the mathematical modeling of dynamical systems. While well suited for a variety of applications in engineering, biology, and ecology, the target application is the safe and reliable control of smart grids. The latter are clearly of vital importance for future economic development and the security of the nation's constantly evolving energy distribution system. Project outcomes will provide practical solutions to complex energy management problems involving uncertain power demands, energy limits, and use of renewable resources while at the same time maintaining grid stability and reliability.The hybrid control architecture involves a given system and an assumed physical model both driven by the same control input. The measured difference between their outputs defines an error system. The key idea is to use a generic input-output representation known as a Chen-Fliess functional series to describe this unknown error system. The series coefficients are estimated in real-time via a minimum mean-square error estimator. Effectively, the conventional artificial neuron is replaced here by this new type of learning unit to approximate the error system. The control problem is solved via predictive control using the assumed model and the learned error system. The enabling technology is recent advances in the numerical approximation of Chen-Fliess series which make it possible to implement the scheme in discrete-time. The specific objectives of the project are to (1) advance the theoretical foundations that underpin real-time learning for control applications, including the cascading of these new learning units for deep learning (2) optimize and adapt the novel theoretical results for real-time control of smart grids to provide a priori performance guarantees. The main problem here lies in the uncertainty coming from the over-simplified/poorly modeled dynamics of the grid in addition to the action of renewable resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习作为解决许多复杂工程问题的有效方法,已经成为众多研究者关注的焦点。机器学习的核心是为计算机提供使用可用数据进行学习的方法。人工神经网络(ANN)传统上一直是机器学习方法的支柱。虽然这些学习系统当然有它们的优势,但在控制工程的背景下,它们也有局限性。例如,基于物理的模型通常为电网、自动驾驶车辆和机器人的控制系统设计提供关键的物理洞察。因此,在基于学习的控制系统的背景下完全抛弃这些模型往往会适得其反。这个早期概念探索性研究资助项目旨在开发一种新的、基础的和创新的控制体系结构,它结合了基于模型的设计方法和实时学习的优点。该体系结构基于动态系统数学建模的最新进展。虽然非常适合于工程、生物和生态等领域的各种应用,但目标应用是对智能电网的安全可靠控制。后者显然对未来的经济发展和国家不断发展的能源分配系统的安全至关重要。项目成果将为复杂的能源管理问题提供实用的解决方案,涉及不确定的电力需求、能源限制和可再生资源的使用,同时保持电网的稳定性和可靠性。混合控制体系结构涉及由相同控制输入驱动的给定系统和假设的物理模型。测量到的它们输出之间的差值定义了误差系统。其关键思想是使用一种称为Chen-Fliess泛函级数的通用输入输出表示来描述这个未知的误差系统。通过最小均方误差估值器实时估计序列系数。有效地用这种新型的学习单元代替了传统的人工神经元来逼近误差系统。利用假设的模型和学习的误差系统,通过预测控制来解决控制问题。使能技术是在Chen-Fliess级数的数值逼近方面的最新进展,这使得在离散时间内实施该格式成为可能。该项目的具体目标是(1)促进支持控制应用的实时学习的理论基础,包括这些用于深度学习的新学习单元的级联(2)优化和调整用于智能电网实时控制的新理论结果,以提供先验的性能保证。这里的主要问题在于,除了可再生资源的行动外,电网的动态过于简化/建模不当带来的不确定性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decentralized Frequency Control using Packet-based Energy Coordination*
Identification of hot water end-use process of electric water heaters from energy measurements
从能量测量识别电热水器热水最终使用过程
  • DOI:
    10.1016/j.epsr.2020.106625
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Khurram, Adil;Malhamé, Roland;Duffaut Espinosa, Luis;Almassalkhi, Mads
  • 通讯作者:
    Almassalkhi, Mads
A Packetized Energy Management Macromodel With Quality of Service Guarantees for Demand-Side Resources
  • DOI:
    10.1109/tpwrs.2020.2981436
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Espinosa, Luis A. Duffaut;Almassalkhi, Mads
  • 通讯作者:
    Almassalkhi, Mads
Discrete-time Chen Series for Time Discretization and Machine Learning
时间离散化和机器学习的离散时间 Chen 系列
A Virtual Battery Model for Packetized Energy Management ∗
用于分组能源管理的虚拟电池模型*
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Duffaut Espinosa其他文献

Luis Duffaut Espinosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Duffaut Espinosa', 18)}}的其他基金

CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了