CAREER: Pushing the Extremes of Heat Conduction via Multiscale Phonon Modeling from First-Principles
职业生涯:通过第一性原理的多尺度声子建模将热传导推向极限
基本信息
- 批准号:1839384
- 负责人:
- 金额:$ 52.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-28 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in nanomaterials and processing technologies have enabled the creation of a large number of heterogeneous nanostructures for a variety of applications including thermoelectric energy generation, microelectronics cooling, thermal barrier materials, solar cells, and energy storage. The number of complex systems consisting of hierarchical structures spanning the nano-, meso- and macro- scales is increasing rapidly. Thermal modeling of these devices requires attention to a broad range of length scales and physical phenomena. Small scale transport in these hierarchical materials is poorly understood mainly due to the lack of a proper description of energy transport by vibrations in the structures, called phonons, across these multiple scales. A rigorous understanding of multiscale phonon transport is crucial for pushing the extremes of heat conduction for the advancement of diverse, transformative applications such as economical thermoelectric energy conversion, which requires ultralow thermal conductivity, and more efficient electronics cooling, which demands ultrahigh thermal conductivity. By improving the efficiency of energy conversion and heat rejection, the project can essentially contribute to global sustainable energy solutions. The educational objective of this CAREER project is to promote academic diversity and equal educational opportunities and to prepare a highly educated workforce in the STEM fields by encouraging interest in thermal science and engineering via a creative museum exhibit for the general public, engaging in research activities via a novel international collaborative course and outreach activities for kindergarten-to-college students, and sharing of the state-of-the-art research findings with industrial partners. The research objective of this CAREER project is to obtain a comprehensive understanding of multiscale phonon transport from first-principles in order to push the upper and lower boundaries of thermal conductivity. Despite well-established theories at the macroscale and the significant progress made at the nanoscale over the past few decades, mesoscale thermal transport remains poorly understood. This project focuses on mesoscale phonon transport to bridge the knowledge gap between nanoscale and macroscale phonon transport. The research tasks are below: (1) Generate the key input parameters for mesoscale simulations, phonon mean free path and interface transmittance, from atomic- and nano-scale first-principles calculations using density functional theory, atomistic Green?s function method, and ab initio molecular dynamics simulations; (2) Solve the Boltzmann transport equation using Monte Carlo simulations for mesoscale transport; (3) Validate multiscale simulation results using time-domain thermoreflectance measurements; (4) Develop a compact robust analytical model for thermal engineers and heat transfer researchers. The outcome of this project is expected to be a major leap in the fundamental understanding of multiscale phonon transport, enabling the creation of novel materials with unprecedented thermal transport properties for numerous applications including thermal energy conversion and management.
纳米材料和加工技术的最新进展使得能够产生大量异质纳米结构用于各种应用,包括热电能产生、微电子冷却、热障材料、太阳能电池和能量存储。由跨越纳米、介观和宏观尺度的层次结构组成的复杂系统的数量正在迅速增加。这些器件的热建模需要注意广泛的长度尺度和物理现象。这些分级材料中的小尺度输运知之甚少,主要是由于缺乏对结构中振动(称为声子)跨这些多尺度的能量输运的适当描述。对多尺度声子输运的严格理解对于推动热传导的极端化以促进多样化的变革性应用至关重要,例如经济的热电能量转换,这需要超低的热导率,以及更有效的电子冷却,这需要更高的热导率。通过提高能源转换和散热效率,该项目可以为全球可持续能源解决方案做出贡献。这个职业生涯项目的教育目标是促进学术多样性和平等的教育机会,并通过为公众举办创意博物馆展览,鼓励对热科学和工程的兴趣,为STEM领域培养受过高等教育的劳动力,通过新颖的国际合作课程和针对大学生的外联活动参与研究活动,并与工业伙伴分享最先进的研究成果。这个CAREER项目的研究目标是从第一性原理中全面了解多尺度声子输运,以推动热导率的上限和下限。尽管在宏观尺度上建立了完善的理论,在纳米尺度上取得了重大进展,在过去的几十年里,中尺度热传输仍然知之甚少。该项目的重点是中尺度声子输运,以弥合纳米尺度和宏观尺度声子输运之间的知识差距。研究任务如下:(1)利用密度泛函理论、原子绿色?s函数方法和从头算分子动力学模拟;(2)使用Monte Carlo模拟求解Boltzmann输运方程进行中尺度输运;(3)使用时域热反射测量对多尺度模拟结果进行分析;(4)为热工程师和传热研究人员开发一个紧凑的鲁棒分析模型。该项目的成果预计将是对多尺度声子输运基本理解的重大飞跃,从而能够创造出具有前所未有的热输运特性的新型材料,用于包括热能转换和管理在内的众多应用。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new dimensionless number for thermoelectric generator performance
- DOI:10.1016/j.applthermaleng.2019.02.093
- 发表时间:2019-04
- 期刊:
- 影响因子:6.4
- 作者:Eurydice Kanimba;Zhiting Tian
- 通讯作者:Eurydice Kanimba;Zhiting Tian
Anderson Localization for Better Thermoelectrics?
安德森本地化以获得更好的热电性能?
- DOI:10.1021/acsnano.9b02399
- 发表时间:2019
- 期刊:
- 影响因子:17.1
- 作者:Tian, Zhiting
- 通讯作者:Tian, Zhiting
New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more
- DOI:10.1063/1.5092525
- 发表时间:2019-05-14
- 期刊:
- 影响因子:3.2
- 作者:Urban, Jeffrey J.;Menon, Akanksha K.;Hippalgaonkar, Kedar
- 通讯作者:Hippalgaonkar, Kedar
Remarkably Weak Anisotropy in Thermal Conductivity of Two-Dimensional Hybrid Perovskite Butylammonium Lead Iodide Crystals
- DOI:10.1021/acs.nanolett.0c04550
- 发表时间:2021-05-03
- 期刊:
- 影响因子:10.8
- 作者:Li, Chen;Ma, Hao;Tian, Zhiting
- 通讯作者:Tian, Zhiting
Thermal Percolation in Well-Defined Nanocomposite Thin Films
- DOI:10.1021/acsami.2c00296
- 发表时间:2022-03-30
- 期刊:
- 影响因子:9.5
- 作者:Chang, Boyce S.;Li, Chen;Xu, Ting
- 通讯作者:Xu, Ting
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiting Tian其他文献
Molecular dynamics study on lattice thermal conductivity of PbTel-xSex alloys
PbTel-xSex合金晶格热导率的分子动力学研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Takuru Murakami;Takuma Shiga;Takuma Hori;Zhiting Tian;Keivan Esfarjani;Gang Chen;Junichiro Shiomi - 通讯作者:
Junichiro Shiomi
Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity
非弹性 X 射线散射的砷化硼声子色散:超高热导率的潜力
- DOI:
10.1103/physrevb.94.220303 - 发表时间:
2016 - 期刊:
- 影响因子:3.7
- 作者:
Hao Ma;Chen Li;S. Tang;Jiaqiang Yan;A. Alatas;L. Lindsay;B. Sales;Zhiting Tian - 通讯作者:
Zhiting Tian
Directly measured high in-plane thermal conductivity of two-dimensional covalent organic frameworks
二维共价有机框架的直接测量高面内热导率
- DOI:
10.1038/s41467-025-61334-8 - 发表时间:
2025-07-14 - 期刊:
- 影响因子:15.700
- 作者:
Jinghang Dai;Qiyi Fang;Gustavo A. Alvarez;Amelia Schaeffer;Kirt A. Page;Jiyoung Kim;Samuel M. Kielar;Joyce Christiansen-Salameh;Eugene Jeong;Dayanni D. Bhagwandin;Jinha Kwon;Ly D. Tran;Md. Sherajul Islam;Ajit K. Roy;Nicholas R. Glavin;Yu Zhong;Jun Lou;Zhiting Tian - 通讯作者:
Zhiting Tian
Low Thermal Conductivity of Lead Selenide and Lead Telluride from First Principles
从第一原理看硒化铅和碲化铅的低导热率
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Zhiting Tian;Jivtesh Garg;Keivan Esfarjani;Takuma Shiga;Junichiro Shiomi;Gang Chen - 通讯作者:
Gang Chen
分子動力学法によるPbTel-xSexの格子熱伝導解析
使用分子动力学方法分析 PbTel-xSex 的晶格热传导
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
村上拓;志賀拓麿;堀琢磨;Zhiting Tian;Keivan Esfarjani;Gang Chen;塩見淳一郎 - 通讯作者:
塩見淳一郎
Zhiting Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiting Tian', 18)}}的其他基金
2019 NSF Student Poster Competition at the ASME International Mechanical Engineering Congress and Exposition (ASME-IMECE); Salt Lake City, Utah; November 8-14, 2019
2019年ASME国际机械工程大会暨博览会(ASME-IMECE)NSF学生海报竞赛;
- 批准号:
1935462 - 财政年份:2019
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
CAREER: Pushing the Extremes of Heat Conduction via Multiscale Phonon Modeling from First-Principles
职业生涯:通过第一性原理的多尺度声子建模将热传导推向极限
- 批准号:
1752110 - 财政年份:2018
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
2018-2019 NSF Student Poster Competition at the ASME International Mechanical Engineering Congress and Exposition (ASME-IMECE); Pittsburgh, Pennsylvania; November 9-15, 2018
2018-2019年ASME国际机械工程大会暨博览会(ASME-IMECE)NSF学生海报竞赛;
- 批准号:
1838333 - 财政年份:2018
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
2016 NSF Student Poster Competition at American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition; Phoenix, Arizona; November 11-17, 2016
2016美国机械工程师学会国际机械工程大会暨博览会NSF学生海报竞赛;
- 批准号:
1649149 - 财政年份:2016
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
EAGER: An Innovative Way to Enhance Cross-Plane Thermal Conductivity of Polymer-Based Thin Films
EAGER:增强聚合物薄膜跨面导热性的创新方法
- 批准号:
1641103 - 财政年份:2016
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Research Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Research Grant
Galactic Outflows: Pushing the Distance Frontiers
银河流出:推动距离边界
- 批准号:
DE240100136 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Research Grant
Conference: Pushing Towards Open-Source AI
会议:推动开源人工智能
- 批准号:
2335774 - 财政年份:2023
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Development of steady rest that can adjust pushing force based on analysis of grinding stock in cylindrical traverse grinding
基于外圆横动磨削磨削坯料分析的可调节推力中心架的研制
- 批准号:
23K03604 - 财政年份:2023
- 资助金额:
$ 52.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Pushing the Practicality of Secure Multiparty Computation
职业:推动安全多方计算的实用性
- 批准号:
2236819 - 财政年份:2023
- 资助金额:
$ 52.33万 - 项目类别:
Continuing Grant
CAREER: Ultrafast Quantum Networks: Pushing the Limits of Photon Production
职业:超快量子网络:突破光子生产的极限
- 批准号:
2239327 - 财政年份:2023
- 资助金额:
$ 52.33万 - 项目类别:
Continuing Grant
Pushing wheat yields to a new frontier
将小麦单产推向新境界
- 批准号:
10056573 - 财政年份:2023
- 资助金额:
$ 52.33万 - 项目类别:
Collaborative R&D