CAREER: Ultrafast Quantum Networks: Pushing the Limits of Photon Production

职业:超快量子网络:突破光子生产的极限

基本信息

  • 批准号:
    2239327
  • 负责人:
  • 金额:
    $ 49.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Quantum networks relying on single photons to carry information are poised to enable a new generation of secure communication, efficient computing, and high-precision sensing technologies. However, transmitting each quantum bit requires generating many single photons. As a result, the current quantum bitrates in long-range networks are often in the kHz range and below, which is insufficient for most practical applications. This project will explore the physical limits to the speed of single-photon generation by coupling quantum emitters in nanometer-sized diamond particles to metallic structures much smaller than the wavelength of light. It will create the basic knowledge allowing quantum optical circuits to operate at practical MHz- and GHz-scale quantum bitrates and at non-cryogenic temperatures, with applications extending into classical optical communication links. The project includes a plan for developing educational modules to teach high-school and undergraduate students about quantum mechanics and the nascent quantum technology. Furthermore, the outreach activity for low-income middle-school students will increase their access to STEM content and scientific careers.The proposed research project will investigate the fundamental speed and efficiency limits of plasmon-enhanced spontaneous emission. By coupling group-IV color centers in nanodiamonds to hybrid-mode plasmonic nanostructures made from low-loss crystalline metals, the project targets three major challenges. First, coherent spontaneous emission will be achieved on the sub-picosecond timescale. Second, the hybridization of dissimilar modes in nanostructures will unlock a giant field enhancement and near-unity radiative efficiency. Third, the project will achieve on-demand emission of indistinguishable photons into on-chip waveguide modes at near-THz repetition rates and at non-cryogenic temperatures. The proposed research will transform how future quantum photonic circuits operate. By increasing the light-matter interaction rates to the THz range, the project aims to outpace GHz-scale quantum dephasing and inhomogeneous broadening. The project will address the long-standing trade-off between electromagnetic field confinement and ohmic losses in plasmonic nanostructures and unlock the potential for high-bandwidth optical communication links. The project will create basic knowledge enabling practical MHz- and GHz-scale quantum bitrates, operation at non-cryogenic temperatures, and multipartite interaction of quantum dipoles for future quantum networks. The PI will develop education modules for middle-school and high-school students and provide research opportunities for at least two undergraduate researchers per semester.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
依靠单光子携带信息的量子网络有望实现新一代安全通信、高效计算和高精度传感技术。然而,传输每个量子比特需要产生许多单光子。因此,目前远程网络中的量子比特率通常在kHz及以下,这对于大多数实际应用来说是不够的。该项目将探索单光子产生速度的物理限制,通过将纳米级金刚石颗粒中的量子发射器与远小于光波长的金属结构耦合。它将创造基本知识,使量子光学电路能够在实用的MHz和ghz级量子比特率和非低温下工作,并将应用扩展到经典光通信链路。该项目包括一个开发教育模块的计划,向高中生和大学生教授量子力学和新生的量子技术。此外,针对低收入中学生的外展活动将增加他们接触STEM内容和科学职业的机会。提出的研究项目将研究等离子体增强自发发射的基本速度和效率限制。通过将纳米金刚石中的iv族色心与由低损耗晶体金属制成的混合模式等离子体纳米结构耦合,该项目针对三个主要挑战。首先,在亚皮秒时间尺度上实现相干自发发射。其次,纳米结构中不同模式的杂交将释放出巨大的场增强和接近统一的辐射效率。第三,该项目将以接近太赫兹的重复率和非低温实现按需发射难以区分的光子到片上波导模式。提出的研究将改变未来量子光子电路的运作方式。通过将光-物质相互作用速率提高到太赫兹范围,该项目旨在超越ghz尺度的量子减相和非均匀展宽。该项目将解决等离子体纳米结构中电磁场限制和欧姆损耗之间长期存在的权衡问题,并释放高带宽光通信链路的潜力。该项目将为未来的量子网络创造基础知识,使实用的MHz和ghz级量子比特率、非低温操作和量子偶极子的多方相互作用成为可能。PI将开发面向初高中学生的教育模块,并为每学期至少两名本科生研究员提供研究机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simeon Bogdanov其他文献

Simeon Bogdanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simeon Bogdanov', 18)}}的其他基金

EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
  • 批准号:
    2240621
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Research Grant
Study on light-field-driven dynamics for ultrafast control of quantum states of matter
用于物质量子态超快控制的光场驱动动力学研究
  • 批准号:
    23K13052
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
  • 批准号:
    2240621
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
Ultrafast and Quantum Photonics
超快和量子光子学
  • 批准号:
    CRC-2021-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Canada Research Chairs
Ultrafast Quantum Photonics: From Fundamental Aspects to High-Tech Applications
超快量子光子学:从基础方面到高科技应用
  • 批准号:
    RGPIN-2017-06894
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Discovery Grants Program - Individual
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
  • 批准号:
    559996-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ultrafast terahertz measurements of quantum dynamics in matter
物质量子动力学的超快太赫兹测量
  • 批准号:
    RGPIN-2022-03412
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Quantum Photonics
超快量子光子学
  • 批准号:
    RGPIN-2018-04781
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Discovery Grants Program - Individual
Design and construction of an ultrafast near-infrared quantum control apparatus
超快近红外量子控制装置的设计与构建
  • 批准号:
    572303-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of novel quantum materials and their ultrafast characterization using advanced near- and mid-infrared spectroscopy
使用先进的近红外和中红外光谱开发新型量子材料及其超快表征
  • 批准号:
    569167-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了